HP 3000 Computer Systems A 5icians

Systems Programming Language
reference manual

HP 3000 Computer System

Systems Programming
Language

Reference Manual

(D et

19420 Homestead Road, Cupertino, California 95014

Part No. 30000-90024
Product No. 32100A Printed in U.S.A. 2/84

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1976-1984 by HEWLETT-PACKARD COMPANY

ii

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the current edition and of any pages changed in updates to that edition.
Within the manual, any page changed since the last edition is indicated by printing the date the changes were made
on the bottom of the page. Changes are marked with a vertical bar in the margin. If an update is incorporated when
an edition is reprinted, these bars are removed but the dates remain. No information is incorporated into a reprinting
unless it appears as a prior update.

FirstEdition Jun 1976
Second Edition Sep 1976
ThirdEdition Feb 1984

iii

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued between editions, contain
additional and replacement pages to be merged into the manual by the customer. The date on the title page and back
cover of the manual changes only when a new edition is published. When an edition is reprinted, all the prior updates
to the edition are incorporated. No information is incorporated into a reprinting unless it appears as a prior update.

The edition does not change.

The software product part number printed alongside the date indicates the version and update level of the software
product at the time the manual edition or update was issued. Many product updates and fixes do not require manual
changes, and conversely, manual corrections may be done without accompanying product changes. Therefore, do not
expect a one to one correspondence between product updates and manual updates.

FirstEdition Jun 1976
SecondEdition Sep 1976
Update #1 Incorporated Dec 1976
Update #2 i Feb 1977
Update #2 Incorporated Dec 1977
Third Edition Feb 1984

v

32100A.08.04

....................

PREFACE

This publication is the reference manual for the HP 3000 Computer System Systems Programming

Language (SPL).

This publication contains the following sections:

Section I —

SectionII —

Section IIT —

Section IV —

Section V. —

Section VI —

Section VII —

Section VIII —

Section IX —

Section X —

Appendix A —
Appendix B —
Appendix C —
Appendix D —

Appendix E —

is an introduction to SPL source format and the HP 3000 Computer System.

describes SPL data storage formats, SPL constants, identifiers, arrays, and
pointers.

describes the global declarations.

describes arithmetic and logical expressions, assignment, MOVE, and SCAN
statements.

describes the various program control statements including GO TO,DO, WHILE,
FOR, IF, CASE, procedure call, subroutine call, and RETURN statements.

describes the machine level constructs including the ASSEMBLE statement (to
use any machine instruction), the DELETE statement, the PUSH statement

(for saving registers), and the SET statement (for setting registers).

describes the subprogram units (procedures, intrinsics, and subroutines) and the
local declarations.

discusses some of the more common MPE intrinsics for performing input/
output.

discusses the various compiler commands.

discusses the MPE commands used to compile, prepare, and execute an SPL
source program together with some introductory material on using the Seg-
menter.

lists the ASCII character set.

lists the reserved words in SPL.

describes how to build your own intrinsic file.

lists the MPE Operating System intrinsic procedures.

lists the diagnostic messages which can be generated by the SPL compiler.

<

Appendix F — éxplains how to call SPL from other languages.
Other publications which should be available for reference when using this manual are:
Systems Programming Language Textbook (30000-90025)
MPE Commands Reference Manual (30000-90009)
MPE Intrinsics Reference Manual (30000-90010)
MPE Segmenter Reference Manual (30000-90011)
Machine Instruction Set Reference Manual (30000-90022)
System Reference Manual (30000-90020)
Compiler Library Reference Manual (30000-90028)

EDIT/3000 Reference Manual (03000-90012)

CONVENTIONS USED IN THIS MANUAL

NOTATION

(1]

{1

italics

underlining

superscript C

return

linefeed

DESCRIPTION

An element inside brackets is optional. Several elements stacked inside a pair of brackets means
the user may select any one or none of these elements.

- A
Example: [B:I user may select A or B or neither

When several elements are stacked within braces the user must select one of these elements.
A

Example: B} user must select A or B or C.
C

Lowercase italics denote a parameter which must be replaced by a user-supplied variable.

Example: CALL name
name one to 15 alphanumeric characters.

Dialogue: Where it is necessary to distinguish user input from computer output, the input is
underlined.

Example: NEW NAME? ALPHA1

Control characters are indicated by a superscript C
Example: Y°©

return in italics indicates a carriage return
linefeed in italics indicates a linefeed

A horizontal ellipsis indicates that a previous bracketed element may be repeated, or that elements
have been omitted.

vii

CONTENTS

Section I Page
SPL STRUCTURE
IntroductiontoSPL 1-1
Conventionsc.uivivinnennnn. 1-1
Source Format 1-1
Delimiters 1-2
Comments..........ccoiiiiiunniennnnnn. 1-2
Program Structure 1-3
Program, 14
Subprogram, 1-5
Introduction to Hardware Concepts 1-6
CodeSegments......................... 1-6
DataSegments 1-9
Procedures 1-11
Subroutines 1-11
Infrinsies L 1-12
Compound Statements 1-13
EntryPoints 1-13
Section II Page
BASIC ELEMENTS
Data Storage Formats 2-1
IntegerFormat 2-1
Double Integer Format 2-1
Real Format 2-2
LongFormat 2-3
ByteFormat 2-4
Logical Format 2-4
Constant Typesccvuiuennnnnn.. 2-5
Integer Constants 2-5
Double Integer Constants 2-5
Based Constants 2-6
CompositeConstants 2-7
Equated Integers 2-8
RealConstants 2-8
LongConstants 2-16
Logical Constants 2-11
StringConstants 2-11
Identifiers 2-12
Arrays ... e 2-12
Pointers 2-13
Labels0iieneeenn... 215
Switches 2-16
Section III Page
GLOBAL DATA DECLARATIONS
Types of Declaractions 3-1
Simple Variable Declarations 3-2
Array Declaration 34
Pointer Declaration 3-11

ix

Label Declaration 3-15
Switch Declaration 3-15
Entry Declaration 3-16
Define Declaration and Reference 3-17
Equate Declaration and Reference 3-18
DATASEG Declaration 3-19
Section IV Page
EXPRESSIONS, ASSIGNMENT, AND SCAN
STATEMENTS
Expression Types v inennnn.. 4-1
Variables. 4-2
TOS . e e 4-3
Address@and Pointers 4-3
Absolute Addresses, 4-4
Function Designator 4-4
BitOperations 4-6
Bit Extraction 4-6
Bit Concatenation 4-7
BitShifts 4-8
Arithmetic Expressions 4-11
Sequence of Operations 4-12
TypeMixing0t 4-13
Logical Expressions 4-13
Sequence of Operations 4-16
TypeMixing, 4-16
Comparing Byte Strings 4-17
ConditionClausesuuuun... 4-19
IFExpressions, 4-21
Assignment Statement L. ... 4-22
MOVE Statementc.cuovuu... 4-25
MOVEX Statementcccuenn.. 4-28
SCAN Statement 4-30
Section V Page
PROGRAM CONTROL STATEMENTS
Program Control 5-1
GOTO Statement.co...... 5-2
DOStatement, 5-4
WHILE Statement 5-5
FOR Statement 5-6
IF Statement 5-8
CASE Statement 5-10
Procedure Call Statement 5-11
Stacking Parameters 5-12
Missing Parameters in Procedure Calls 5-13
Passing Labels as Parameters 5-13
Passing Procedures as Parameters 5-14
Subroutine Call Statement 5-18
RETURN Statement 5-20

CONTENTS (continued)

Section VI
MACHINE LEVEL CONSTRUCTS
ASSEMBLE Statement
Delete Statement
PUSH Statement

Section VII
PROCEDURES, INTRINSICS, AND
SUBROUTINES

Subprogram Units.
Procedure Declaration
DataTypeccouo...

Parameters
Options.

OPTION UNCALLABLE
OPTION PRIVILEGED
OPTION EXTERNAL

OPTION CHECK

OPTION FORWARD
OPTION INTERRUPT
OPTION INTERNAL
OPTION SPLIT
Local Declarations

Local Simple Variable Declarations
Standard Local Variables

OWN Simple Variables.
EXTERNAL Simple Variables . .

Local Array Declarations

OWN Arrays
EXTERNAL Arrays
Local Pointer Declarations

Standard Local Pointers

OWN Pointers

EXTERNAL Pointers
Label Declarations
Switch Declarations

Equate Declaration and Reference

Procedure Body
Intrinsic Declarations

Subroutine Declaration

Section VIII
INPUT/OUTPUT

Introduction to Input/Output

Opening a New Disc File

Writing Records into a File in

Sequential Order.

SET Statement

................

OWN Variables

Standard Local Arrays

Entry Declaration
Define Declaration and Reference .

...............

....................

Reading a File in Sequential Order . . .

........

......... 7-1
......... 7-2
......... 7-4
......... 7-4
......... 7-6
......... 7-6

........

........

........ 7-22

........

Updating a File

Numeric Data Input/Output

File Equations

Section IX
COMPILER COMMANDS
Compiler Format

Use and Format of Compiler Commands

$CONTROL Command
$IF Command

$SETCommandcovvirvenennn.

$TITLE Command
$PAGE Command

S$EDITCommandc0uvvirnnun..

Merging
Checking Sequence Fields

EQENG © « v ooooe oo e et

$SPLIT $NOSPLIT Command
$COPYRIGHT Command
Cross Reference Listing

SINCLUDE i,

Section X
MPE COMMANDS

MPECommandsc¢0ovveruunenn

Specifying Files for Programs

Specifying Files as Command Parameters

System-Defined Files

User Pre-Defined Files '

New Files

OldFiles it it iiennnnn.

Input/Output Sets

Specifying Filesby Default

Compiling, Preparing, and
Executing SPL Source Programs
:SPL Command
:RUN SPL.PUB.SYS Command

Entering Program Source Interactively

:SPLPREP Command

:SPLGO Command
:PREPCommand

:PREPRUN Command
:RUN Command
Using External Procedure Libraries

Relocatable Libraries.

Creating and Maintaining

Relocatable Libraries

Segmented Libraries
Creating and Maintaining
Segmented Libraries

........

.....

.............

...........

...........

CONTENTS (continued)

Appendix A Page Appendix E Page
ASCIICHARACTERSETcoitunnn A-1 COMPILER ERROR MESSAGES E-1
Appendix B Page Appendix F Page
RESERVEDWORDScc0on... B-1 CALLING SPL FROM OTHER LANGUAGES F-1
Appendix C Page

BUILDING AN INTRINSICFILE C-1

Appendix D Page

MPE INTRINSICS0t D-1

Title Page Title Page
Code Segment Registers 1-7 Delete Statement, 6-14
Sample Segmented Program 1-8 OpeningaNew DiscFile 8-3
Data Stack Registers 1-10 FREAD IntrinsicExample 8-5
Accessing Array Elements 3-6 FWRITE Intrinsic Example 8-8
Sample Global Array Declarations 3-12 FUPDATE Intrinsic Example 8-10
Pointersand Addressesc0ihn.n.n 4-4 SymbolMapciiiuiieenennannas 9-8
BitExtractioncciiiiiiiennnennn. 4-7 S$CONTROL CODEOQutputcvvvuveusnen. 9-9
BitConcatenationouiivueeenennn. 4-8 $CONTROL ADROutput 9-10
Bit Shift Operations 4-10 $CONTROL INNERLIST Qutput 9-11
Passing a Label asa Parameter 5-15 Cross Reference Listing 9-21
Instruction Formats 6-2 BUILDINTOufputccitiiiennnn. C-2
Title Page Title Page
Global Array Declaration Summary 3-10 NewFilesttt 104
Comparison of DO, WHILE, and FOR Statements ... 5-7 OldFilesttt 104
Machine Instruction Mnemonices 6-9 SPL Compiler File Designators 10-5
Procedures vs Subroutines 7-28 PARMValuescoiivuienennnn 10-8
Common Input/Output Intrinsies 8-1 BUILDINT Error Messageso cvcvveunennnn Cc-3
Compiler Command Summary 9-5 Summary of MPE Intrinsies D-1
MPECommandscoueveernmnnnnnn 10-1 SPL Compiler Error Messages E-1
System Defined Files. 10-3

SECTION

SPL STRUCTURE

1-1. INTRODUCTION TO SPL

SPL (Systems Programming Language for the HP 3000 Computer System) is a high-level, machine
dependent programming language that is particularly well suited for the development of compilers,
operating systems, subsystems, monitors, supervisors, etc.

SPL has many features normally found only in high-level languages such as PL/I or ALGOL: free-form
structure, arithmetic and logical expressions, high-level statements (IF, FOR, GOTO, CASE, DO-
UNTIL, WHILE-DO, MOVE, SCAN, procedure call, assignment, and compound statements), recur-
sive procedures and subroutines, and variables and arrays of six data types (byte, integer, logical,
double integer, real, and long real). In addition, IF, FOR, CASE, DO-UNTIL, and WHILE-DO
statements can be indefinitely nested within each other and themselves. These features significantly
reduce the time required to write programs and make them much easier to read and update.

In addition, SPL provides machine-level constructs that insure the programmer has complete control
of the machine when he needs it. These constructs include direct register references; branches based on
actual hardware conditions; bit extracts, deposits, and shifts; delete statements; register push/set
statements; and an ASSEMBLE statement to generate any sequence of machine instructions.

1-2. CONVENTIONS

In the HP 3000, the bits of a word are numbered from left to right starting with bit 0. Thus, the sign, or
most significant, bit of a single word is bit 0 and the least significant bit is bit 15.

1-3. SOURCE PROGRAM FORMAT

An SPL source program can contain both program text and compiler commands in 80 column reccrds.
Program text is entered in free format in columns 1-72. A statement is terminated with a semicolon (;)
and may continue to successive lines without an explicit continuation indicator. Statement labels are
identifiers followed by a colon (:) preceding the statement. For example,

START: SCAN BUF WHILE TEST,

Any compilation is bracketed by BEGIN and END statements. A period is required after the final
END. For example,

BEGIN
INTEGER I;
I:=2%373+ 275;

END.

1-1

Compiler commands are denoted by a $ in column 1 and may be interspersed with program text lines.
However, unlike program text lines, compiler commands which are to be continued must contain an
ampersand (&) as the last non-blank character of the line. If using EDIT/3000 to enter text, you must
explicitly enter a space following the ampersand and before pressing return. In addition, the continua-
tion lines must contain a $ in column 1. For example,

$CONTROL LIST,SOURCE,WARN,MAP,&
$CODE,LINES= 36

A compiler command line must never be separated from its continuation line by a program text line.
Refer to section IX for a discussion of all the SPL compiler commands.

1-4. DELIMITERS

Blanks are always recognized as delimiters in SPL, except within character strings (see paragraph
2-17 for the format of string constants). Therefore, blanks cannot be embedded in the following items:

Reserved words (see Appendix B).

Identifiers

= assignment

<< start of a comment
>> end of a comment

Special characters can also act as delimiters:
Punctuation : ;, . ©

Relational Operators = < >

Parentheses ()

Operators + — * /A

Brackets []

1-5. COMMENTS

A comment is used to document a program but has no effect upon the functioning of the program
itselfithat is, a comment does not generate any code.

1-2

R e

= T e 7
i TR mx i m . i £ syt i s
S i e L) SRR Aol
S i dd W‘,, ml««x,mMw»«‘x"'««>€4mm§,[«gx«xgwmy»uummm o ‘ggg;:g;g;;wg »xsxmi«mwmmmxxs 4 S i
s&suv»v‘wimxxlfmmwxWmu«q e G i i v e
i R e s e \ " .
. L g M{Msixmw.xmw . ey w;;vxxx;‘ﬂ[x:x\;xmxxnx? o e ‘ i
‘Eh “ m o] ARG S i
ﬁ 3 210110 m§< “@' AELD ‘“ B Wi e ZE%:?X(,(,,,Z@,M
e gy e e B il ¥ L oy o
mm Xm;w R B A sxmn”‘@’”iﬁ?’ e smuwwm‘ i “I;‘Z‘,’i?gfi‘“‘, o s“imgu SR r«xxxmxmxmx
e e e e (;"’;, e it i | i i
B s ;xxsum,»,m,.w,wmwmm i v;);”;:;;(“&:%y” SR e d!shwm,w(s ax’xm&:&“xdtx’ it o S G) o ,,,&\,,,2 @W o mwzz;i,@;g;g,g";‘;;gX,W

vsx; % S i

S wau«» i

o G
s s
Pl

;
s i i i Rt
S iR 1

-

v e

bt e

i
i xu;ssmswxmmu
e

s e i - . ki e S
St COMMENT Lt FolEes e e it
i \ 1] N 1 s i i ol i i e D
o b bk g FLEG 5t mﬂw,m,,ww e e
‘mwxxwwmssx «b swwmmmmxm e ,'r‘ Tt iﬂmw’m «mwmwmwww *Eii St B mgsw o
’};mx‘mnmm& s e S e s mx;x»x;S‘;r»xmw,xm“;gmm:gi} .
kg e “*’ﬁff*fi‘2‘3“’(*1‘?””‘“;“““*:’; e e e s R G e - * 4“":(,@“,« . muisé?‘ix
ey v xmmwma i e, mn«mmm;m; i SNM?M!W;tWNxQ«xxtbtQ«mrqm;;xwmx»xqu ‘ i o i ? s
SR LAt L ; e B ~ et o .
s e ! “x 7] :j}%"“' e msw’.&»”‘i g ,:" }fm, b S
dieiey e “ - «,‘é,mz,“t L iy m,m “g“w g . i b o k[g;‘;;xgqmiziw‘és i) A I?’z??h i
Wmmww e et W R T i e B m;.‘ o e e i
D A e ns[Fean Bl oG B s i v el e
e . xx:zmﬁxwxxxmmw; s g e "i‘u?. &wmu;m:zx;;zssgx&:;:x;gx:ﬁx&r;;n:»m;;;m e o M,, m,m iy i s e s h ‘ai,é’g"”x é%s
e s i o i : R D
L e e o
i ol e S e e i A Mss i e
e G R .
" sm:E ""s""“’EK‘““““‘”‘?2“&‘“’”‘;{;ﬁ;%msnmémxw;m»z sx!x:wuwnv;xmiwuw . ’i»?;xxwm?u e «&mkX,i»?%%%i;Ei;fféixf?ﬁ%<;;2§f‘i;x,§;‘;§‘¥' w;;mg;; i sxx«x»sxxmxxmwxxstmmxus e ,‘j,’” e e - L‘lxm;"f
& o x*&%\zi!s":méx]t;mxwwmwew i R L B e it
i = E wﬁ Gt ‘Wm,nguxumtsg i 532?;;2:22;??5 (,“« G i gw "ggwazg« e w;msgi - i
i S wiww) m;ﬁﬁﬂ;“ o yzswmuwxms; Pl o Gl S B dae xm,m,,wm, e : S R
i ‘5"‘;“‘;}*‘@““}‘””‘ Wmmxx'««w«x;tv s "é2ﬁ;’L"‘%i’;i?”“??”‘*”gwxm« i xwm»mmiwww X S “‘; e 23» }S‘leins R0 B o i S 2‘4’223‘5*@“"‘&%"’“"“‘*il&‘n - ”‘"‘Zi"“ﬁ;#;;&?;‘
oA o R e e hfmrl,xxxmx“) i -
Wxx"x"(‘mmmg;d,w‘ wg st e S § R 2 i g 0
i) i i e e S e o i ~
i »siﬁ.ﬁ?ﬁéé”“ i N;m,;"mwvwmi s 'iimﬂmstshn " T ER T xmmcmmmswwm&zi&,, S ixwx%xxm" i . N“Kﬂman!f
e “"‘i‘i"*“‘iii i e v!kmxs g - s;mswssw ; *WH B
n e W’gﬁ A TEe wwmusmna lmnw e kix“mmxxﬂ M"H”"““w i
| mm,mw o B S M ;w s,,, m -
i o 7 e bl L
W““WM Gl i ms;mix i “”“"‘”"i . SSNM:QXM

. 0 i

Sl Sl

i et
o e i

vl &
i i P L
b e e SR sx»mwmmmw; s i
s ‘smu&wss?@ - mi,‘;s o | G “W«*;;;‘;“;W . §i
: L e : .
<s\« 1] i@@m SN m . a::m,&sé,é,;gm o -
S w,ﬁ R S S R e xmmw w ek St o ‘v%s)
B e RS A B “ W i i i i
i b ‘:;ww o e s s ;::gﬂsi , "
i 1 s - o
agégg ix i i @;’ i %g,
i e A mxmxmxhxm s i
i NT %ﬁmiwm»‘)mxmxhuwmxm s e B i) | .
o LIVETULN 30 o £ emn i i w (Eilugy i ; i
i ui:;,j"“‘?;%x s D é?&,‘é&iﬁﬁ”mm“‘“"“ . im o 0 . -
e S 2) "rx?q;x«,msmlqun,m,mm e i .
s ‘ e e i A e i .
o X @nm e e = e
- g S B o S o
1 2’25’;“‘“‘“"“”””*& W :muwwwssmm . . -
" Mg;ﬁ;@mms;wmm e LS ’ ,wi] b
S)
f SR mi,‘ézﬁmg L ; .
e A o e = :
i s wxwwm’ﬁ‘&xm i i o o
mw;;mswun it RS v e g AT m s s i
“x;im ; e “a;im x§wn x»x vwsaxsi‘ e e i ﬁ @
i pis i i s 7 s
k wm e S o ; e
i t!x LA T e i v?ﬁ' e
i { M bR S Wi
S doienne . : o
. i . i i 5\ o i S h
o ,w Genemin S - L e
o i L = o i i m,w% - o i -
i ; i:flw ;m;c:“*‘;&‘r,‘,;;:ig ikﬁﬁ a G i . .
) " ; i .
: ng:,xmvﬁ I m’sxwii&cfsq’s‘nmw Lo : = :
I Al e oo i i)
e!mmg i 5 memmm e i i
mwskmumxiﬁ’ii?&i;’;i‘ﬁ“’" i% Bt s§s§*‘§””‘ i) o i
;&:smmwwmmn e f“‘”’fw ’*“W il o i

comment
is any sequence of ASCII characters except a semicolon in Format 1 and >> in Format 2. The ASCII
character set is listed in Appendix A.

Format 1 is equivalent to a null statement and can be used anywhere a statement or declaration is
expected. Format 2 can be used anywhere in a program except in an identifier.

The characters within a comment are ignored by the compiler; they are not upshifted (changed to
uppercase) if lowercase.

When the special character !’ is encountered outside a comment, define, or string, the rest of the
source line following the exclamation point will be regarded as a comment.

1-6. PROGRAM STRUCTURE

SPL is a block structured language which takes advantage of the virtual memory scheme of the HP
3000 to provide program segmentation as a user option. Thus, by using procedures and segmentation,
the programmer can organize his program such that the entire program does not have to reside in
memory at the same time. The system automatically gets procedure segments from auxiliary memory
and loads them into main memory when necessary.

Additionally, SPL uses the stack architecture of the HP 3000 to handle both global and local variables.
Global variables may be referenced anywhere in the program except in procedures where a local
variable has the same identifier. Local variables are allocated memory locations upon entering a
procedure and can only be referenced within the procedure in which they are declared. The memory
locations assigned to local variables are released when the procedure is exited. When one procedure
calls another procedure, the local variables of the calling procedure are not available to the called
procedure unless they are passed as parameters; however, their memory locations are saved so that
upon returning to the original procedure, the local variables contain the same values as before the
procedure call.

1-3

Similarly, both global and local subroutines are allowed in SPL. However, unlike global variables,
global subroutines can only be called within the main program and not within a procedure. Local
subroutines may be called only within the procedure in which they are declared.

The SPL compiler accepts either complete programs or subprograms as source input. A program
consists of both-declarations and a main body of executable statements. The declaration portion may
contain variable, procedure, intrinsic, and/or global subroutine declarations.

A subprogram consists of only the declaration portion and does not contain a main body. In a
subprogram compilation, global declarations (that is, declarations for variables which can be refer-
enced throughout the entire program) do not allocate any space and global subroutines are ignored if
present. A subprogram compilation generates code for procedures and local subroutines only and must
be linked to a separately compiled main program before being executed.

For example,

PROCEDURE B(A);
INTEGER A; << procedure declaration>>
A=A+ 1; main
program

1-7. PROGRAM

A program is an organized collection of declarations and statements designed to solve a specific
problem. A main program consists of global data declarations and subroutines and a main body.

where

global data declarations
are statements defining the attributes of the global identifiers used in the program (see section III).

procedures/intrinsics
are statements which define all the procedures and intrinsics used in the program (see section VII). A
procedure definition includes data declarations for parameters and local variables followed by the

executable statements of the procedure.

global-subroutines
are the subroutines used by the main program.

main-body
is a sequence of statements separated by semicolons

statement [;...;statement]

statement
is an executable statement.

The program elements must be in the order shown above.

For example,

BEGIN
INTEGER A:=0,B,C:=1; <<global data declaration>>
PROCEDURE N(X,Y,Z); << procedure>>
INTEGER X,Y,Z; <<local data declaration>>
X:=X*(Y+2);
FOR B:=1 UNTIL 20 DO <<main program>>
N(A,B,C);
END.

1-8. SUBPROGRAM

A subprogram is a portion of a program which can be compiled by itself but must be linked to a main
program for execution. A $CONTROL SUBPROGRAM compiler command is used before the subprog-
ram text to put the compiler in subprogram mode. See section IX for the compiler commands used to
link a subprogram to a main program for execution.

The form of a subprogram is the same as a program except that a subprogram does not have a main
body.

where

global data declarations
are statements defining the attributes of the global identifiers used in the program (see section III).

procedures/intrinsics

are statements which define all the procedures and intrinsics used in the program (see section VII). A
procedure definition includes data declarations for the parameters and local variables followed by the
executable statements of the procedure.

global-subroutines
are the subroutines used by the main program. The global-subroutines can be omitted since the
compiler ignores them in subprogram compilations.

For example,

$CONTROL SUBPROGRAM
BEGIN
INTEGER N,M,0; <<does not allocate space>>
EQUATE A:=101, B:=202;
PROCEDURE C;
BEGIN

END;
PROCEDURE D;
BEGIN

END;
END.

1-9. INTRODUCTION TO HP 3000 HARDWARE CONCEPTS

A process is the unique execution of a program. If the same program is run by several users, it becomes
several processes. If the same user runs the program several times, each execution is a distinct process.
A process consists of a code domain (the machine instructions of the program) and a data area called a
“stack.” The code and data in the HP 3000 are always separated logically. The code may always be
shared, but the data stack cannot. The MPE Operating System schiedules and dispatches a process for
execution. See the MPE General Information Manual for a further discussion of processes and the
stack.

1-10. CODE SEGMENTS

All machine instructions within the HP 3000 are organized into variable length segments accessed
through a hardware-known table called the Code Segment Table (CST). Since the hardware detects
references to segments which are not in main memory, the code domain of a process is not limited to

1-6

the size of main memory. Segments are brought from disc into main memory as needed. A process can
execute only one code segment at a time. The process “escapes” from its current code segment by
executing a Procedure Call (PCAL) instruction. A PCAL can reference procedures in different code
segments from the current one and cause control to be transferred to a different code segment. A PCAL
instruction is generated by either a function designator (see paragraph 4-6) or a procedure call
statement (see paragraph 5-8).

The current code segment of a process is defined by three hardware address registers:

1. PB— Program Base register. Contains the absolute address of the starting location of the segment
in main memory.

2. PL — Program Limit register. Contains the absolute address of the last location of the code
segment. .

3. P — Program counter. Contains the absolute address of the instruction currently being executed.

The relationship of the three current code segment registers is shown in figure 1-1. The central
processor checks all instructions to insure that they stay within the bounds of the current code
segment. All addresses within a current code segment are relative to these registers. The operating
system can relocate the segment anywhere in main memory; only the three registers have to be
changed to define the segment’s locations.

Program Base Low Memory
Register (PB) - PB is the addressing base register; its absolute

address is set by the operating system.

Instructions
and constants

Program counter (P} —» P changes as each instruction is executed.

Program Limit
register (PL)

PL is the addressing limit register; its address is
High Memory set by the operating system.

Figure 1-1. Code Segment Registers

Code segmentation is controlled by using the SEGMENT parameter on $CONTROL commands (see
section IX). The segment name stays in effect until another segment name is specified. For procedures,
the $CONTROL SEGMENT command must precede the procedure declaration of the first procedure in
the segment. If a new segment is to be specified for the main program, the $SCONTROL SEGMENT
command follows the procedure and intrinsic declarations and precedes the global subroutines and
main body. Global subroutines must be in the same segment as the main body. See figure 1-2 for a
sample SPL program which has two procedures in one segment and a global subroutine with the main
body in another.

1-7

00000
00000
00000
00000
00000
000600
00000
00000
00000
00000
00000
00000
00000
00000
QcQ00
00000
00000
00000
00000
ponoo
00000
00006
n0006
000086
nooneé
00006
00006
0010
0o0n13
00013
00022
0no2s6
00027
00027

HMNN(\)Q—.;—;HPMHuuwppp“mpp‘pﬂg—.q—app;—l“b—lﬂ.—-“oo

$CONTROL USLINIT,MAIN=MAINLINE

BEGIN
INTEGER LENGTH,TIME}
ARRAY BUFFER(0:35)}
INTRINSIC PRINT,READ;

$CONTROL SEGMENT=PROC®A‘®SEG

PROCEDURE PROC’A(LEN):
VALUE LEN}

INTEGER LEN}

PRINT (BUFFER,=LEN,0):

PROCEDURE PROC’B(LEN):
VALUE LEN3

INTEGER LEN;
PRINT(BUFFER,=LEN,%320)

SCONTROL SEGMENT=MAIMNLINESEG

SUBROUTINE READ’A’LINE}

LENGTH:=READ(BUFFER,=72);

<< START OF MAINLINE
LOOP:
READ’A’LINE;

TF LENGTH <> 0 THEN
BEGIN

>>

IF ((TIME:=TIME+1) MOD 2)=0 THEN PROC®A(LENGTH)

GO TO LOOP:
ENDs
END,

MAINLINESEG 0
HAME
MAINLINE
READ
PROC’A
PROC’B
TERMINATE’
SEGMENT LENMGTH
PROC’A’SEG 1
NAME STT
PROC’B 1
PRINT 3
PROC’A 2
SEGMENT LENGIH

STT

N W N =

ELSE PROC’B(LENGTH)

CODE ENTRY SEG

] 6
?
1
1
?
40
CODE ENTRY SEG
0 0
?
6 6
20

Figure 1-2. Sample Segmented Program

1-8

1-11. DATA SEGMENTS

Each process has a completely private storage area for its data. This storage area is called a stack or a
data segment. When the process is executing, its stack must be in main memory. A stack is delimited
by two stack addressing registers:

1. DL — Data Limit register. Contains the absolute address of the first word of main memory
available in the stack.

2. 7 — Stack limit register. Contains the absolute address of the last word of main memory available
in the stack.

Between DL and Z, there are separate and distinct areas set off by three other stack addressing
registers:

1. DB — Data Base register. Contains the absolute address of the first location of the direct address
global area of the stack. "

2. Q — Stack marker register. Contains the absolute address of the current stack marker being used
within the stack.

3. S — Top-of-stack register. Contains the absolute address of the top element of the stack. Manipu-
lated by hardware to produce a last-in, first-out stack. The top four words may be kept in hardware
registers. ’

The relationship of the five data addressing registers is shown in figure 1-3. Each process is also

described by a status register that contains its segment number and status, and a program-accessed,
one-word index register used for array indexing and other computing functions.

There is only one set of these hardware registers; their content is established for a process when it
starts executing.

Low Memory '
Data Limit register ——m- DL can be changed for user by the operating

(DL) system.

User managed
array space

Data Base register ——» DB is the addressing base register set by

DB operating system.
(bB) Global variables P g

J)
149
b))
C

Procedure
Parameters

Stack
Marker

Stack marker > Q changes with each procedure call and exit.
register (Q)
Local storage
and current
computation

Y

Top of Stack
register (S)

S can change with each instruction.

not accessible

Stack limit register ——» Z is the addressing limit register which can be
(2) High Memory changed for the user by the operating system
when overflow occurs.

Figure 1-3. Data Stack Registers

Instructions are provided to access all regions indicated in this diagram except S to Z. The four
top-of-stack registers are not shown.

In the HP 3000, memory reference instructions specify an address relative to one of the hardware
registers. Each register has its own addressing range as indicated below:

+ -
P register 255 255
DB register 255 HEEEK
Q register 127 63
S register *opokolok 63

1-10

Note that the DB register cannot be directly addressed with a negative range and that the S register
cannot be addressed with a positive range. The DB negative area can be accessed through indirect
addressing and indexing. The S positive area is undefined since S points to the top of the stack.

Any memory reference instruction specifies a displacement within the range of one of these registers.
This location is used as the operand; if another address is required, it is implicitly assumed to be the
top of stack (S—0).

The basic addressing mode in the HP 3000 is word addressing (one word = 16 bits); however, there are
also instructions to load and store bytes (half words — 8 bits) and doublewords (32 bits).

Many HP 3000 instructions use the top of the stack (the absolute address in the S register) as an
implicit operand. For example, the ADD instruction always uses the values in S—0 and S—1 for its
operands. The S register is constantly changing in a last-in, first-out manner such that data is
“pushed” onto the stack or “popped” off the stack.

1-12. PROCEDURES

A procedure is a self-contained section of code which is called to perform a function. Some of the
features of procedures are: ’

® Procedures can be passed parameters (either call-by-value or call-by-reference).
e Procedures can declare local variables and reference global variables.

® Procedures can return a value.

e Procedures can call themselves.

® Procedures can be called from either procedures or the main body.

® Procedures can have local subroutines (sections of code which can only be called from within the
procedure).

Procedure declarations precede the main body of the program and contain the local declarations and
the procedure body.

For example, a procedure to compute N factorial is

INTEGER PROCEDURE FACT(N); VALUE N; INTEGER N;
BEGIN
FACT:=1F N=0 THEN 1
ELSE N*FACT(N- 1);
END;

For a complete explanation of procedure declarations, see section VIL

1-13. SUBROUTINES

An SPL subroutine is a simpler and less powerful section of code than the procedure. Subroutines can
have parameters, can be typed functions and can be called recursively. A subroutine is called with an

1.11

SCAL instruction instead of a PCAL instruction. SCAL does not provide a 4-word stack marker to save
the environment; therefore,

¢ Values in the Q and index registers remain unchanged.
e A PB-relative return address is placed on the top of the stack.
® Subroutines cannot have local variables.

® Subroutines must be located in the same segment as the caller since the SCAL and SXIT
instructions do not bridge segment boundaries.

® Subroutines can be entered and exited faster than procedures since there is much less work for the
instructions to do.

¢ Subroutines can be declared within procedures and can reference procedure-local variables.

Global subroutines can be called only within the main body. Global subroutine declarations must
appear after the procedure and intrinsic declarations.

Local subroutines can be called only from the procedure in which they are declared. They are declared
in the body of the procedure, after any local data declarations, but before the executable statements of
the procedure body. For a complete description of subroutine declarations, see section VIL.

1-14. INTRINSICS

An intrinsic is a procedure which has previously been defined, either as part of the MPE Operating
System or in a user’s own intrinsic file. The advantage of using intrinsics is that you do not have to
include the complete procedure in your program, but merely declare the name of the intrinsic in an
intrinsic declaration.

MPE intrinsics are available to:

Access and alter files.

Manage program libraries.

Obtain date, time, and accounting information.
Determine job status.

Determine device status.

Obtain device file information.

Transmit messages.

Insert comments in command stream.

Perform ASCII/binary number conversion.

Perform input/output on job/session standard devices.
Obtain system timer information.

Obtain the user’s access mode and attributes.
Search arrays and format parameters.

Execute MPE commands programmatically.

Intrinsics must be declared with an intrinsic declaration (See section VII). Appendix C shows how to
build your own inirinsic file. Appendix D contains a list of the MPE intrinsics. Refer to the MPE
Intrinsics Reference Manual for a complete description of the system intrinsics.

1-12

1-15. COMPOUND STATEMENTS

BEGIN and END are used as a delimiting pair and are matched much like parentheses. Within the
body of a main program or a procedure, a BEGIN-END pair can be used to combine several statements

into one compound statement. Compound statements are useful in IF, FOR, CASE, DO-UNTIL, and
WHILE-DO statements.

where

statement
is any SPL executable statement (including compound statements).

For example,

IF A<B THEN
BEGIN

Note that a semicolon is not required before the END statement. If it is included, it is a null statement.

1-16. ENTRY POINTS

Both main programs and procedures can have multiple entry points. The first executable statement of
a main program or procedure is an implicit entry point. Alternate entry points are labeled statements
whose labels are declared in an entry declaration (see paragraph 3-7 for the format of an entry
declaration). An entry point cannot be the object of a GO TO statement.

A program may be started at an alternate entry point with a parameter on the :RUN or :PREPRUN
command. An alternate entry point for a procedure is equivalent to another name for the procedure
that can be called with the same formal parameters. Local variables are set up and initialized
regardless of which entry point is used. For example, assume the following program has been compiled
and prepared (:SPLPREP) and the program file is $OLDPASS.

BEGIN
ENTRY P1,P2,P3;

P1: A:=100;

P2: A:=200;
P3: A:=300;
END.

To start execution at P2, use the command

:RUN $OLDPASS,P2

1-14

BASIC ELEMENTS

SECTION -

2-1. DATA STORAGE FORMATS

SPL processes six types of data: integer, double integer, real, long (extended precision real), byte, and
logical. Each data type has its own representation in memory. The following paragraphs describe the
data types and discuss the manner in which they are stored in memory.

2-2. INTEGER FORMAT

Integers are whole numbers containing no fractional part. Integer values are stored in one 16-bit
computer word. The leftmost bit (bit 0) represents the arithmetic sign of the number (1=negative,
0= positive). The remaining 15 bits represent the binary value of the number. Integer numbers are
represented in two’s complement form and range from — 32768 to + 32767.

Decimal Two’s
Value Complement
+32767 2077777
+ 1 %000001
0 %000000

- 1 DB1777T7

- 2 %177776

- 32768 %100000
0 1 2 3 4 5 9 |10} 11112 |13 {14 | 15

e value
t ~ : >
sign bit 15-bits

2-3. DOUBLE INTEGER FORMAT

When you wish to use integer values with magnitudes greater than the integer format allows, you may
use double integers. Double integers use 2 computer words for a total of 32 bits. The leftmost bit of the

2-1

first word (bit 0) is the sign bit (1= negative, 0= positive). The remaining 31 bits represent the binary
value of the number. Double integer numbers are represented in two’s complement form and range
from —2,147,483,648 to + 2,147,483,647.

Word 1 Word 2

0

15 0 15

1. value >
‘ r~ 31-bits '
sign bit

2-4.

REAL FORMAT

Real numbers are represented in memory by 32 bits (two consecutive 16-bit words) with three fields.
The fields are the sign, the exponent, and the mantissa. The format is that known as excess 256 —
exponents are biased by +256. Thus, a real number consists of:

Sign(S)
Bit 0 of the first word (positive= 0, negative= 1). A value X and its negative, — X, differ only in the
sign bit.

Exponent(E)
Bits 1 through 9 of the first word. The exponent ranges from 0 to 777 octal (511 decimal). This

number represents a binary exponent, biased by 400 octal (256 decimal). The true exponent is
E-256; it ranges from — 256 to + 255.

Fraction(F)

A binary number of the form 1.xxx, where xxx is represented by 22 bits, stored in bits 10 through
15 of the first word and all of the second word. Note that the 1. is not actually stored, there is an
assumed 1. to the left of the binary point. Floating-point zero is the only exception — it is
represented by all 32 bits being zero.

The range of the magnitude of non-zero real values is from 8.63617* 10~ to 1.157921 * 10~"". Real
numbers are accurate to 6.9 decimal places.

The internal representation for real numbers is:

Word 1 Word 2

1 9 IOI 15 0 15

| I exponent | fraction
‘ 9-bits D 22-bits

¥

sign bit

The formula for computing the decimal value of a floating-point representation is:

Decimal value = (- 1)5 * F * 2E-26)

2-2

which is equivalent to:

Decimal value = (= 1)5 * (1.0 + (xxx * 2722)) * 26729

For example, 7.0 is represented as

1.
of1|lolojo|ojoJo|1}jOo]1]|1]OjO]O}O oloJoJoloJojojojojojojo|O|jO|O]O
01 9110 15 0 . 15
| '4——— exponent > ! -< fraction f!

sign bit

Sign (S) = 0 (positive)
Exponent (E) = 402 (octal) = 258 (decimal)

Fraction (F) = 1.11 (binary) = (1 x2%+ 1 x 2+ (1x27?
1 + 172+ 1/4 .
=1.75 (decimal)

So, the decimal value of the real value is:

(-1 x 175 x 2258 - 26 = 1 x 175 x 2°
=175x 4
=170

*NOTE: Throughout this discussion the following changes apply to Pre-Series II Systems: Long numbers are
48 bits (three words) accurate to 11.7 decimal places. The decimal value of a floating point repre-
sentation of a long value is (-1)5 * (1.0 + (xxx * 2-38)) * 9(E-256)

2-3

by o By
featu,

g €
2089

2-6. BYTE FORMAT

Character strings are stored using byte format. Character values are represented by 8-bit ASCII codes,
two characters packed in one 16-bit computer word. The number of words used to represent a character
value depends on the actual number of characters in the string. Appendix A shows the ASCII
characters and their octal codes.

The internai representation of byte values is:

0 1 2 3 4 5 6 7 8 9 10 | 11 |12 | 13| 14 | 15

character character
. 8-bits 8-bits

2-7. LOGICAL FORMAT

Logical values are stored in one 16-bit computer word. They are treated as unsigned integer values
ranging from 0 to 65,535. A value is considered true if it is odd and false if it is even (i.e., only bit 15 is

checked). When a value is set to TRUE, a word of all ones is used (% 177777). A value set to FALSE is
all zeros.

The internal representation of a logical value is:

value
16-bits

Y

2-4

2-8. CONSTANT TYPES

Constants are literal values that stand for themselves. There are two basic types of constants in SPL:
numeric constants and string constants.

Numeric constants are broken down intc five types:

Integer (16 bits — includes 1 sign bit)
Double integer (32 bits — includes 1 sign bit)
Real (32 bit floating point)

Long (64 bit floating point)

Logical (16 bits — no sign bit)

or ik Do

String constants are made up of ASCII characters which are packed two 8-bit characters to a word.
In SPL, constants are merely bit patterns that occupy a given number of bits. A given 16-bit pattern

can have many constant interpretations (two characters, an integer, a logical value, etc.). Note that
hardware instructions provide arithmetic capability for all of the constant types mentioned here.

2-9. INTEGER CONSTANTS
Integers are signed whole numbers containing no fractional part. Decimal integer constants use the
decimal digits 0 through 9. They can contain a leading plus (+) or minus (—) sign. A number without a
leading sign is positive. The range of an integer constant is from — 32768 to + 32767.
The form of a decimal integer constant is,

[sign] integer

where

sign
is + or —.

integer
is a string of the digits 0 through 9.

For example,

0

12345
- 31766
+12384

2-10. DOUBLE INTEGER CONSTANTS

Double integers are signed whole numbers containing no fractional part. Decimal double integer
constants use the decimal digits 0 through 9 followed by a D. They can contain a leading plus (+) or

2-5

minus (—) sign. A number without a leading sign is positive. The range of a double integer constant is
from —2,147,483,648 to +2,147,483,647. The form of a decimal double integer constant is:

[sign] integer D
where

sign
is + or —

integer
is a string of the digits 0 through 9.

For example,

—123456D
+ 99999999D
312735D
0D

2-11. BASED CONSTANTS

SPL allows you to use any base from 2 (binary) through 16 (hexadecimal) in constants. A based
constant can contain a leading sign and/or a trailing type designator. A leading per cent sign (%)
denotes a based constant. The base is enclosed in parentheses following the per cent sign. If a base is
not specified, the constant is octal (base 8). The letters AB,C,D,E, and F represent the values
10,11,12,13,14, and 15 respectively in bases greater than 10. If a type designator is used with a base
greater than 10, a space must precede the type designator.

The form of a based constant is:
[sign] %[(base)] integer [type-designator]
where

sign
is + or —.

base ’
is any integer between 2 and 16. If the % is used without a base being specified, base 8 (octal) is
assumed.

integer
is a string of digits, where digit is between 0 and base— 1.

type-designator
is D,E, or L for DOUBLE, REAL, espectively. If a type-designator is not specified, the
constant will be a single-word constant which can be used as type INTEGER, LOGICAL, or BYTE.

based constants, the bit pattern of the based integer is used directly as a right
justified real number — it is not converted to floating point form. A leading minus sign will generate

2-6

the two’s complement form of single-word and type DOUBLE based constants, but will only reverse
the sign bit for REAL and LONG based constants.

For example,

+% 777

-%(2)10101010

%(16)ABC D <<type DOUBLE>>
% (16)ABCD < <single-word>>

2-12. COMPOSITE CONSTANTS

Composite constants are a convenient way of representing specific bit patterns for tables and special
numbers such as the lowest possible real number. A composite constant consists of a series of bit fields
separated by commas which is enclosed in brackets ([1). Each bit field contains a field length and an
unsigned integer value separated by a slash. The integer value may be an unsigned composite integer;
thus, composite integers may be nested within a composite constant. Composite constants may contain
a leading sign and/or a trailing type designator.

The form of a composite constant is:

[sign] composite-integer [type-designator]

where

sign
is + or —.

composite-integer
is of the form:

[lengthivalue,...,lengthivalue]
NOTE

The brackets[] in this case are literal symbols which are part of
the syntax for composite integers — they do not represent the
symbols used to denote optional items in this manual.

length

is an unsigned non-zero decimal, based, composite, or equated integer constant. The sum of the lengths
for a composite constant cannot exceed the number of bits used to represent the constant type. If the
sum of the lengths is greater than 16, a type-designator is required.

value
is any unsigned decimal, based, composite, or equated integer constant. Type-designators are not
allowed.

type-designator
is D,E, or L for DOUBLE, REAL, or LONG respectively. If a type-designator is not specified, the
constant will be a single-word constant which can be used as type INTEGER, LOGICAL, or BYTE.

2-7

Composite constants are formed by left-to-right concatenation of binary bit fields. Within each bit
field, unspecified leading bits are set to zero and bits exceeding the field size are truncated on the left.
The resulting composite integer is right justified with leading bits set to zero. If a minus sign is used
with a single-word or a type DOUBLE composite constant, the two’s complement will be generated. If a
minus sign is used with a REAL or LONG composite constant, the sign bit will be reversed and the
other bits will be unchanged — no conversion to floating point form occurs with composite constants.

For example,

[32/1]1D = % 00000000001
[32/1]E = % 00000000001
—[32/1]1D = %3777
—[32/1]1E = % 10000000001
[3/2,12/%5252] = % 25252
[2/211,15/[3/%(2)101,12/0],10/123] D = %720000173
—1[3/2,12/% 5252] = % 152526

2-13. EQUATED INTEGERS

Equated integers are used to assign an integer value to an identifier for compile-time only. An equated
integer does not allocate any storage, but merely provides a form of abbreviation for constants. When
an equated identifier is used, the appropriate constant is substituted in its place. When Equate
declarations are used instead of actual constants, programs can be changed simply; instead of replac-
ing every occurrence of a constant, only the EQUATE declaration need be changed. An equated
integer reference may be preceded by a plus (+) or minus (—) sign. The value assigned to an identifier
in an EQUATE declaration must be a single-word value; however a D may be used after the identifier
to convert the single-word value to a double-word value whose first word is all zeros. If a D is used, a
space must separate the identifier from the D.

The form of an equated integer constant is
[sign] identifier [D]
where

sign
is + or —.

tdentifier
is a legal SPL identifier which has been declared in an EQUATE declaration (see paragraph 3-9).

2-14. REAL CONSTANTS

Real constants are represented by an integer part, a decimal point, and a decimal fraction. Either the
integer part or the decimal fraction may be omitted (but not both) to indicate a zero value for that part
only. A leading plus (+) or minus (—) sign may be used. A number without a sign is positive. The
constant can contain a scale factor to indicate a power of ten by which the value is multiplied.

The forms of a real constant are

Format 2: [sign] decimal-number [E [sign] power]
Format 3: [sign] decimal-integer E [sign] power
where

sign
is either + or —.

based/composite-integer
is any unsigaed based or composite integer constant.

decimal-number
is of one of the following three forms:
n.n
n.
.n
(n being an unsigned decimal integer).

power
is an unsigned decimal integer constant.

decimal-integer
is an unsigned decimal integer constant.

Real numbers are accurate to 6.9 decimal digits of magnitude (0 can be represented exactly). The
absolute value of non-zero real numbers can range from 8.63617 x 107" to 1.157921 x 10" . The E
construct is used to indicate the scaling factor, if any. For example, 2.5E—2 means 2.5 x 1072

Note that when a composite or based integer is used, there is no power after the E, and that the E is
required to indicate a real value. The bit pattern created for the integer is used directly as a
right-justified real number; it is not converted to floating-point form. This construct is useful for
creating special floating-point constants such as the smallest positive number. When the base is

greater than 10, a space must precede the E.

For example,

+1.234

—.2024

-1.105E-21

10E-20

% (4)321000E
%(2)1111011110111E
[3/5,5/273,20/% (16)102AB39]E

Some examples of invalid real constants are

+10.E <<missing power>>
E-21 <<missing decimal-number>>
2E—- << missing power>>

29

2-15. LONG CONSTANTS

Long constants are represented by an integer part, a decimal point, and a decimal fraction. Either the
integer part or the decimal fraction may be omitted (but not both) to indicate a zero value for that part
only. A leading plus (+) or minus (-) sign may be used. A number without a sign is positive. The
constant can contain a scale factor to indicate a power of ten by which the value is multiplied.

The forms of a long constant are
Format 1:[sign] based/composite-integer L
Format 2: [sign] decimal-number [L [sign] power]
Format 3: [sign] decimal-integer L [sign] power
where

sign
is either + or —.

based/composite-integer
is any unsigned based or composite integer constant.

decimal-number
is of one of the following three forms:
n.n
n.
n
(n being an unsigned decimal integer).

power
is an unsigned decimal integer constant.

decimal-integer
is an unsigned decimal integer constant.

Long numbers are accurate to 16.5*decimal digits of magnitude (0 can be represented exactly). The
absolute value of non-zero long numbers can range from 8.636168555094445 x 10-7* to
1.157920892373162 x 10" The L construct is used to indicate the scaling factor, if any. For example,
2.5L—2 means 2.5 x 1072

Note that when a composite or based integer is used, there is no power after the L, and that the L is
required to indicate a long value. The bit pattern created for the integer is used directly as a
right-justified long number; it is not converted to floating-point form. This construct is useful for
creating special floating-point constants such as the smallest positive number. When the base is
greater than 10, a space must precede the L.

For example,

9321.678975L72
—.111015L-27
% (8)3777T77T77717L

*11.7 with pre-Series I Systems

2-10

2-16. LOGICAL CONSTANTS

Logical constants are 16-bit positive integers. Hardware operations on logical values are defined for
addition, subtraction, multiplication, division, and comparison.

Logical values can be represented by any of the following:

1. TRUE
2. FALSE
3. integer
where

TRUE and FALSE
are SPL Reserved words.

integer
is any (single word) decimal, based, composite, or equated integer.

A logical value is considered true if its value is odd, false if its value is even (i.e., only bit 15 is
checked). When the reserved words TRUE and FALSE are used, they are equivalent to the integer
values — 1 (all ones) and 0 (all zeros) respectively. Since logical values are always assumed to be
positive, they range from 0 to +65,535. When negative integers are used as logical values, they are
interpreted as large positive numbers (e.g., — 1 equals % 177777).

2-17. STRING CONSTANTS

A string constant is a sequence of one or more ASCII characters bounded by quote marks (*). Each
character is converted to its 8-bit representation and the characters are packed two per word.

The form of a string constant is
“character-string”

where

character-siring

is a sequence of ASCII characters (see Appendix A).

A character string can contain from 1 to 127 ASCII characters. A quote (”) is represented within a
character string by a pair of quotes (*”) to avoid ambiguity with the string terminator.

For example,

“THE CHARACTER ™ IS A QUOTE MARK.”
“A NORMAL STRING WOULD LOOK LIKE THIS”
“lowercase letters are not UPSHIFTED in strings”

2-11

2-18. IDENTIFIERS

Identifiers are symbols used to name data and code constructs in an SPL program. They consist of
uppercase letters and numbers, and are assigned uses by declarations. There is no implicit typing for

identifiers.

The form of an identifier is
letter [letter'digit-string)

where

letter
is a letter of the alphabet (A-Z).

letter’digit-string
is a string of letters (A-Z), digits (0-9), and apostrophes ().

An identifier always starts with a letter and may contain from 1 to 15 characters (letters, digits, and
apostrophes). Identifiers larger than 15 characters are truncated on the right (A123456789012345 =
A12345678901234). Lowercase letters are allowed, but are always converted to uppercase form (Aabc
= AABC). If the listing device has upper and lowercase characters, a lowercase identifier is printed in
lowercase, but SPL does not differentiate it from an uppercase identifier with the same characters.
The attributes of an identifier are determined by a declaration, not by the form of the identifier.

Reserved words are combinations of characters that cannot be used as identifiers, since they have
implied meanings in the language. (See Appendix B for a list of SPL reserved words).

For example,

MATRIX

A"B

AN’ IDENTIFIER
MATI123

X

2-19. ARRAYS

An array is a block of contiguous storage which is treated as an ordered sequence of variables having
the same data type. These variables are accessed using a single identifier to denote the array and a
subscript number to denote the particular variable (element) within the array. Array elements are
sometimes called subscripted variables.

SPL allows one-dimensional arrays (only one subscript is permitted) in all data types (integer, logical,
real, byte, long, and double). Subscripting automatically uses the index register to indicate the
element number. Bounds checking is not done at either compile-time or run-time. Arrays can be
initialized but do not have a default initialization value. Arrays can be located in any region of the
user’s domain which can be addressed relative to the DB, Q, S, or P registers. Values in P-relative
arrays are constants which cannot be changed at run-time.

2-12

2-20. POINTERS

A pointer is a type of variable which contains the 16-bit address of another data item in the program.
The 16 bits of the pointer represent the address of a variable. A pointer can be changed dynamically to
point to different data items during program execution. Pointers are declared in a pointer declaration
(see paragraph 3-4 for global pointer declarations and paragraph 7-24 for local pointer declarations).

There are four contexts in which pointers can be used:

1. Anywhere that the object of the pointer could be used; this generates an automatic indirect

reference to the object of the pointer.

2. On the left side of an assignment statement to change the value of the object of the pointer.

3. A pointer can be preceded by an @ to refer to the actual contents of the pointer (the data label), not

the object of the pointer.

4. A pointer can implicitly reference the LST and SST instructions. (Privileged mode only.) The
pointer reference must always be subscripted and cannot be preceded by ‘@’. MAP indicates this
addressing scheme by ST+number as shown in the example below. Refer to the Machine Instruc-

tions Set manual for more detailed information.

00000100
00001000
00002000

00002100

00003000

00004000

IDENTIFIER

CONSOLE
SYSGLOB
TERMINATE

00000
00000
00000
00000

00000

00004

CLASS

SIMP. VAR.
POINTER
PROCEDURE

00000
00001
00002
00003
1 END.

00004

LDXI, 074
LDI ,000
LST ,000
STOR DB 000

PCAL, 052

TYPE

INTEGER
INTEGER

SCONTROL INNERLIST, MAP, ADR

021474
021000
030000
051000

000000

ADDRESS

DB+000

01.05
01.05
02.45
03.15

14.90

For example, assume the following data declarations

INTEGER A,B:=7,C:=300,DATA:=~1;
INTEGER POINTER PTR:=@ DATA,;

2-13

These declarations initialize the variables B, C, and DATA and set up PTR as a pointer to DATA as

shown below.

Now, consider the statement

A:=PTR;

300

DATA

PTR

This statement assigns the object of the pointer PTR (i.e., DATA) to A.

DATA

PTR

Using the pointer on the left side of an assignment statement can change the value of the object of the

pointer.

PTR:=B+(C;

The object of the pointer PTR (i.e., DATA) is assigned the value of B+ C.

-1

300

2-14

A

B

C

DATA

PTR

Preceding the pointer variable with an @ references the address contained in the pointer instead of the
value of the object of the pointer. Using this construct on the right side of an assignment statement
assigns the DB-relative address of the object of the pointer to a variable. For example,

A:=@PTR;

A is assigned the address contained in PTR (that is, the address of DATA).

DB-relative A
address of DATA
7 B
300 C
> 307 <— DATA
L PTR

To change the pointer to point to a different data item, use the @ construct on the left side of an
assignment statement as shown below.

@PTR=@A;

This statement changes PTR to point to A instead of DATA.

DB-relative A
address of DATA
7 B
300 C
307 DATA
_ PTR

2-21. LABELS

Labels are used to identify statements for transfer of control and for documentation purposes. A label
must always be followed by a colon (:) to separate it from the statement that it identifies. For
consistency and documentation, labels may be declared with a label declaration; however, it is not
necessary to do so since labels declare themselves automatically when they are used. A label can be
used to identify only one statement within the scope of the identifier; that is, the same label can be
used to identify two different statements as long as the statements are not both in the main body or

both in the same procedure.

2-15

2-22. SWITCHES

The purpose of a switch is to transfer control to one of several labeled statements within a program. A
switch is first declared with a switch declaration (see paragraph 3-6 for the format of a switch
declaration). The switch declaration defines an identifier to represent an ordered set of labels. Each
label in the list (from left to right) is assigned a number from 0 to n— 1 (where n is the number of labels)
which indicates the position of the label in the list. A switch of program control is accomplished by
using a GO TO statement with the switch identifier and an index. The index is evaluated to an integer
value and control is transferred to the switch label specified by that number. Bounds checking on the
index to insure that the value has a corresponding labeled statement is optional. See paragraph 5-2 for
the form of the GO TO statement.

For example,

BEGIN
INTEGER INDX;
REAL AB;
SWITCH SW:=11,L2,1L3,L4;

INDX:=-1;
LOOP: INDX:=INDX+1;
GO TO SW(INDX);

L1: A:=B;

GO TO LOOP;
L2: B:=A;

GO TO LOOP;
L3: A=A+B;

GO TO LOOP;
L4: B:=A+B;
END.

2-16

SECTION

GLOBAL DATA DECLARATIONS

TYPES OF DECLARATIONS

3-1.

A declaration defines the attributes of an identifier before it is used in a program or procedure. All

le program or procedure. There are two possible levels of declarations in SPL

identifiers in SPL programs (with the exception of labels) must be explicitly declared once only withix
a sing

Global (in a main program)
Local (in procedures)

Globally declared identifiers can be accessed throughout a program (even within procedures) and their

f the program. Locally declared identifiers can be

inning o

in the procedure where declared and the

declarations are grouped together at the beg

ions are grouped together at the

ir declarat

ion covers global data declarat

ith
ing of the procedure body. Th

for local declarations.

accessed only w

ion VIl

ions only; refer to sect:

is sect

beginn

tely follow the opening BEGIN as shown below.

ia

d

10NS 1mme:

Global data declarat;

=

s e
-

.

Sy S

i

a0

.

inny

e, E

.

Sran

HEiaE T e Siow
-

.

mw%@
-

usag

T
-
.
e

hEEsany s
o

-

Shaiene., ity

-
S@N@@%@mmw

.

.

mmammwm&mm

e

e
e

i
-

By

¢ %@wmm%m%wm

i

i

.
o

.

B T

.

Global data declarations are composed of the following types of declarations (which are described

individually later in this section)

global simple variable declarations

global array declarations

global pointer declarations

label declarations

switch declarations
entry declarations

define declarations

equate declarations

Glebal data identifiers (simple variables, arrays, and pointers) are either allocated space in the stack
or use space in the stack allocated to another identifier. Normally, the next available DB-relative

location is allocated for the identifier. However, a register-relative or identifier-relative location may

be specified in the declaration to override the default allocation. In this case, the referenced locat

ion is

used without being allocated. When using identifier or register references, the compiler only checks

that the resulting address is within the direct address range of the register being used. You must

does not exceed the bounds of your data stack when the identifier is referenced

ion

that this locat

msure

3-1

at execution time. Additionally, when using a reference identifier, you must declare it before using it
as a reference identifier. For example, the declarations:

INTEGER A,B,C;
LOGICAL D= A+ 2;

indicate that D is a LOGICAL simple variable using the same location as the INTEGER variable C.
The syntax for register and identifier references is described in the appropriate paragraphs for the
type of indentifier (simple variable, array, or pointer) in this section. Data identifiers which are
register or identifier referenced cannot be initialized.

3-2. SIMPLE VARIABLE DECLARATIONS

A simple variable declaration specifies the type, addressing mode, storage allocation, and initializa-
tion value for identifiers to be used as single data items. The type assigned to a variable determines
the amount of space allocated to the variable and the set of HP 3000 instructions which can operate on
the variable.

Two methods can be used to link global variables to variables in separately compiled procedures. The
first method is to use the GLOBAL attribute in the global variable declaration and the EXTERNAL
attribute in the local variable declaration (see paragraph 7-19). The identifiers in both declarations
must be the same and the MPE Segmenter is responsible for making the correct linkages. (See the
MPE Segmenter Subsystem Reference Manual for a discussion of the Segmenter.) The second method is
to include dummy global declarations at the beginning of subprogram compilations. All global
declarations must be included, even for identifiers not referenced in the subprogram, and they must be
in the same order as in the main program. It is possible, although not recommended, to use different
identifiers for the same variable, but you are responsible for keeping them straight. The second
method is faster and requires less space in the USL (User Subprogram Library) files, but does not
protect you against improper linkages.

where

type
specifies the data type of the variables in the declaration. The ¢type may be INTEGER, LOGICAL,
BYTE, DOUBLE, REAL, or LONG.

3-2

variable-declaration
can be any of the following forms:

variable [:= initial-valuel
variable = register [sign offset]
variable = reference-identifier [sign offset]

variable
is a legal SPL identifier.

initial-value
is an SPL constant to be used as the value of the variable when program execution begins.

register
specifies the register to be used in a register reference. The register may be DB, Q, S, or X.

sign
is + or —.

offset

is an unsigned decimal, based, composite, or equated integer ‘constant.

reference-identifier
is any legal SPL identifier which has been declared as a data item except DB,PB,Q,S, or X.

Form 1 of the variable declaration allocates the next available DB-relative location(s) for the variable.
The amount of space allocated depends on the variable zype. If an initial value is specified, the variable
is initialized when execution starts. If the constant used for the initial-value is too large, it is truncated
on the left, except string constants which are truncated on the right. If no initial-value is specified, the
variable is not initialized.

Form 2 of the variable declaration equivalences a variable either to the index register (X) or to a
location relative to the contents of one of the base registers (DB, Q, or S). Since the index register is 16
bits, only variables of type INTEGER, LOGICAL, and BYTE may be equivalenced to this register.

Form 3 of the variable declaration equivalences a variable to a location relative to another variable.
The reference-identifier must be declared first. For example, the declarations

LOGICAL A;
INTEGER B= A+5;

equivalence B to the location 5 words past the location of A. Simple variables which are address
referenced to arrays use either the location of the zero element of the array (if direct), or the location of
the pointer to the zero element of the array (if indirect). Note that if the reference-identifier is an array,
only the zero element may be used in a variable reference of a simple variable declaration. In any case,
the final address must be within the direct address range.

DB, PB, Q, S, and X cannot be used as the identifier on the right side of an equals sign in a variable
declaration, because they are interpreted as register references instead of variable references. For
example, consider the declaration

INTEGER A,B,C,DB,D=DB+2;

The variable D is equivalenced to the location 2 cells past the cell to which the DB register points —
not 2 cells past the location assigned to the variable DB.

The legal combinations of registers, signs, and offsets are shown below

Register Sign Offset
DB + 0 to 255
Q + 0 to 127
Q - 0Oto 63
S - 0to 63
X none , none

3-3. ARRAY DECLARATION

An array declaration specifies one or more identifiers to represent arrays of subscripted variables. An
array is a block of contiguous storage which is treated as an ordered sequence of “variables” having the
same data type. Each “variable” or element of the array is denoted by a unique subscript (SPL provides
one-dimensional arrays only). An array declaration defines the following attributes of an array:

e The bounds specification (if any) which determines the size of the array and the legitimate range of
indexing.

o The data type of the array elements.
® The storage allocation method.

® The initial values, if desired.

® The access mode (direct or indirect).

There are two types of access modes used for arrays: indirect and direct. An indirect array uses a
pointer to the zero element of the array. Addressing an indirect array element uses both indirect
addressing and indexing. If the array is a BYTE array, the pointer contains a DB-relative byte
address. For all other data types, the pointer contains a DB-relative word address. A direct array uses
a location within the direct address range of one of the registers (DB, Q, or S) as the zero element of the
array and then uses indexing to address a specific array element. Figure 3-1 illustrates the differences
between direct and indirect arrays.

The area in the stack between DB and the initial value of Q is divided into two areas: Primary DB
Storage and Secondary DB Storage. The Primary DB area is used for global storage of simple
variables, direct arrays, and pointers to indirect global arrays. The Secondary DB area is used for
global storage of indirect arrays. The Primary DB area cannot normally extend past DB+ 255. The
only exception is when the last global data declaration is for a DB-relative direct array whose zero

3-4

Index Register

3

Indexing

Indexing

@A

Indirect Addressing

A(0)

A(3)

Direct Array

A(0)

A(3)

> Primary DB

?‘ Secondary DB

> Primary DB

Figure 3-1. Accessing Array Elements

3-5

element falls between DB+ 0 and DB+ 255. Since the index register is used to address array elements,
the array may extend past DB+ 255. The Secondary DB area immediately follows the Primary DB area
regardless of the size of the Primary DB area.

There are two methods which can be used to link global arrays to arrays in separately compiled
procedures. The first method is to use the GLOBAL attribute in the global array declaration and the
EXTERNAL attribute in the local array declaration (see paragraph 7-23). The identifiers in both
declarations must be the same and the Segmenter is responsible for making the correct linkages. The
second method is to include dummy global declarations at the beginning of subprogram compilations.
All global declarations must be included, even for identifiers not referenced in the subprogram, and
they must be in the same order as in the main program. It is possible, although not recommended, to
use different identifiers for the same array, but you are responsible for keeping them straight. The
second method is faster and requires less space in the USL (User Subprogram Library) files, but does
not protect you against improper linkages.

where

GLOBAL
is used for arrays which are referenced in procedures compiled separately.

type
specifies the data type of the array. The type can be INTEGER, LOGICAL, BYTE, DOUBLE, REAL, or

LONG. If not specified, the array is type LOGICAL.

global-array-dec
is one of the following forms:

1. array-name(lower:upper) [=DB]

This form is used for an uninitialized array with defined bounds. If = DB is not specified, the
array is indirect and the next available DB Primary location is allocated for the pointer to the
zero element of the array. Storage for the array itself is allocated in the Secondary DB area. If
=DB is specified, the array is direct and the next available n cells in the DB Primary area are
allocated for the array (where n is the number of locations required to store the array). The
zero element of the array must be within the direct address range whether or not it is actually
an element of the array. For example, consider the declaration:

INTEGER ARRAY A(-20:-10)=DB;

The next available DB primary location is allocated to A(—20), but all indexing is done
relative to A(0) even though it is not an actual element of the array. The address which A(0)
would have if it were in the array must be between DB+ 0 and DB+ 255,

3-6

*4,

*5.

*6.

*1.

array-name(@)=DB [+ offset]

This form is used for an indirect array with undefined bounds. If no offset is specified, the next
available Primary DB location is used, without being allocated, as the pointer to the zero
element of the array. If an offset is specified, then that DB-relative cell is used, without being
allocated, as the pointer to the zero element. In either case, space is not allocated for the array
in the Secondary DB area nor is initialization allowed.

array-name(*)=DB [+ offsef]

This form is used for a direct array with undefined bounds. If no offset is specified, the next
available Primary DB location is used, without being allocated, as the zero element of the
array. If an offset is specified, then that DB-relative location is used, without being allocated,
as the zero element of the array. In either case, space is not allocated for the array nor is
initialization allowed.

array-name(@) [=register sign offset]

This form is used for an indirect array with undefined bounds whose pointer is Q or S-relative.
If a base-register reference is not specified, the next available DB cell is allocated for the
pointer to the zero element of the array. If a base-register reference is specified, then that
Q-relative or S-relative cell is used, without being allocated, as the pointer to the zero element
of the array. Space is not allocated for the array nor is initialization allowed.

array-name(*)
This form can be used for an indirect array with undefined bounds. The next available DB cell
is allocated for the pointer to the zero element of the array. Space is not allocated for the array
nor is initialization allowed. This form is equivalent to array-name(@) without a base-register
reference.

array-name(*) = register sign offset

This form is used for direct arrays with undefined bounds which are Q-relative or S-relative.
The specified cell is used as the zero element of the array; however, space for the array is not
actually allocated and the array cannot be initialized.

array-name(*) = reference-identifier [sign offset]

This form is used for an indirect array with undefined bounds whose pointer is Q- or S-relative.
If a base-register reference is not specified, the next available DB cell is allocated for the
pointer to the zero element of the array. If a base-register reference is specified, then that
Q-relative or S-relative cell is used, without being allocated, as the pointer to the zero element
of the array. Space is not allocated for the array nor is initialization allowed.

INTEGER B(*)= A+ 10;

would not be allowed because the direct address range for the DB register is 0 to 255. If the
array is direct, the referenced location is used as the zero element of the array. If the array is
indirect, the referenced location is used as the pointer to the zero element except when either
the array or the reference-identifier (but not both) is type BYTE, in which case the next
available DB-cell is allocated for the pointer to the zero element. Space is not allocated for the

3-7

array nor can the array be initialized. DB, PB, Q, S, and X cannot be used as the reference-
identifer because they are interpreted as register references instead.

8. array-name() = reference-identifier (index)

This form is used for equivalencing one array to another array. The reference-identifier may be
either an array or a pointer variable and must be declared first. If the reference-identifier is a
direct array, the array is a direct array whose zero element is the location of the referenced
array element. If the reference-identifier is an indirect array or a pointer variable, the array is
indirect. In this case, the next available DB cell is allocated for the pointer to the zero element
of the array if a non-zero index is specified or if either the array or the reference-identifier (but
not both) is type BYTE; otherwise, both use the same location for the pointer to the zero
element. In any case, space is not allocated for the equivalenced array nor can the equiva-
lenced array be initialized. DB, PB, Q, S, and X cannot be used as the reference-identifier
because they are interpreted as register references instead.

*Forms 4 through 8 are not allowed if the word GLOBAL is included in the declaration.

array-name
is a legal SPL identifier.

reference-identifier
is any legal SPL identifier except DB,PB,Q,S, or X which has been declared as a data item.

register
specifies the base register in a register reference. The register may be either Q or S.

sign
is + or —.

offset

is an unsigned decimal, based, composite, or equated integer constant within the direct address range
as shown below:

Register Sign Offset
DB + 0 to 255
Q + 0 to 127
Q - 0to 63
S - 0to 63
initialized-global-array
is of the form:
array-name(lower:upper) [= DB} = value-groupl,...,value-group]

3-8

lower
specifies the lower bound of the array. It can be any decimal, based, composite, or equated
single-word integer constant or constant expression.

upper
specifies the upper bound of the array. It can be any decimal, based, composite, or equated
single-word integer constant or constant expression.

index
indicates the element of the referenced array to be used as the reference location. The index can
be any decimal, based, composite, or equated single-word integer constant.

value-group
is either of the following:

initial-value
repetition-factor (initial-value [,...,initial-value])

initial-value
is any SPL numeric or string constant.

repetition-factor

specifies the number of times the initial value list will be used to initialize the array elements. The
repetition-factor can be any unsigned non-zero decimal, based, composite, or equated single-word
integer constant.

Global arrays with defined bounds can be initialized. Initialization consists of a := followed by a list of
numerical constants or strings. A group of constants can be surrounded by parentheses and preceded
by a repetition factor-(n) to specify that the constants in parentheses are to be used n times in
initializing the array before going on to the next item in the list. These repeat groups cannot be nested.
Elements are initialized starting with the lowest subscript and continuing up until the constant list is
exhausted. The initialization list cannot contain more values than there are elements in the array. If
the constant used for the initial value is too large, it is truncated on the left except string constants
which are truncated on the right. If no initial value is specified, the variable is not initialized. Only the
last array in a declaration list can be initialized.

Table 3-1 summarizes the syntax and meanings for the various forms of global array declarations.
Figure 3-2 shows a series of array declarations with the locations assigned to the identifiers.

3-9

Table 3-1. Global Array Declarafion Summary

OFFSET ADDRESSING POINTER ZERO ELEMENT

FORM RANGE MODE LOCATION LOCATION
id{low.up) Indirect next DB (A) Sec. DB (A)
id(low:up)=DB Direct Primary DB (A)
id{@)=DB Indirect next DB C(nextDB)
id(@)= DB+offset 0-255 Indirect DB+ offset C(DB+offset)
id(*)=DB Direct Primary DB
id(*)=DB+offset 0-255 Direct DB+ offset
id(@) Indirect next DB (A) C(next DB)
id(@)= Q+offset 0-127 indirect Q+offset C(Q+offset)
id(@)=Q-offset 0-63 Indirect Q-offset C(Q-offset)
id(@)= S—offset 0-63 Indirect S-offset C(S-offset)
id(*) Indirect next DB (A) C(next DB)
id(*)=id Note 1 Note 2 Note 3
id(*)=id+ offset Note 4 Direct id+offset
id(*)=id—offset Note 4 Direct id—offset
id(*)=id{index) Note 5 Note 6 id(index)
id(*)=Q+offset 0-127 Direct Q+offset
id(*)=Q-offset 0-63 Direct Q-offset
id(*)=S—offset 0-63 Direct S-offset

Legend

(A) — Storage is allocated for the designated pointer or array.

C() — The contents of the location in parentheses is the address of the zero element of the array.
id - identifier

low — lower bound

up — upper bound

3-10

NOTES

1. If the right side id is a direct array or a simple variable, the
addressing mode is direct. If the right side id is an indirect
array or a pointer variable, the addressing mode is indirect.

2. If the addressing mode is indirect, both identifiers use the
same pointer location unless one id is type BYTE and the
other is not, in which case, the next available DB-cell is
allocated for the pointer.

3. The zero element is in the same location as the right side id
(or its zero element if the right side id is an array).

4. The offset must result in an effective address within the
direct address range of the base register which the right side
id uses.

5. If the right side id is a direct array, the left side id is direct; if
the right side id is a pointer variable or an indirect array, the
left side id will be indirect.

6. If the addressing mode is indirect, the next available DB-cell
is allocated for the pointer if:

a. a non-zero index is specified.
and/or
b. one of the two identifiers is type BYTE and the other is
not.

Otherwise, both identifiers use the same pointer location. If the
addressing mode is direct, there is no pointer.

3-4. POINTER DECLARATION

A pointer declaration defines an identifier as a “pointer” — a single word quantity used to contain the
DB-relative address of another data item — the object of the pointer. A pointer declaration defines the
following attributes of a pointer:

® The data type.
® The storage allocation method.
® The initial address to be stored in the pointer (optional).

When the pointer is accessed, the object is accessed indirectly through the pointer address. The object
is assumed to be, or is treated as if it were, the type of the pointer.

There are two methods which can be used to link global pointers to pointers in separately compiled
procedures. The first method is to use the GLOBAL attribute in the global pointer declaration and the
EXTERNAL attribute in the local pointer declaration (see paragraph 7-27). The identifiers in both
declarations must be the same and the Segmenter is responsible for making the correct linkages. The
second method is to include dummy global declarations at the beginning of subprogram compilations.

3-1i1

00001000
00002000
00004000
00005000
00006000
00007600
00008000
00009000
00010000
00011000
000120600
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000

00061000
PRIMARY

NO, ERRORS=000;

00000
00000
00000
00001
00001
00001
00001
00061
00001
00001
00001
00001
00001
00001
00001
00001
00001
00001
00001
00001
00001
00001

0001

-0 0

1

1

SCUNTRQOL ADR

BEGIN

ARRAY A(0:10),A0(0:10):=11(%17);
DB+000
DB+001

REAL ARRKRAY A1(0:10):
DB+002

REAL ARRAY A2(0:10)=DB:
DB+003

REAL ARRAY A3(@)=DB;
DB+031

REAL ARRAY A4(@)=DB+5:
DB+00S

REAL ARRAY AS5(*)=DB:
DB+031

REAL ARRAY A6(*)=DB+6;
DB+00é&

REAL ARRAY A7(@):
DB+031

REAL ARRAY A8(R)=Q+3:
Q +003

REAL ARRAY A9(@)=Q=3:
Q@ =003

REAL ARRAY A10(@)=S=2:
S =002

REAL ARRAY A11(#*);
DB+032

REAL ARRAY A12(#)=A1;
DB+002

REAL ARRAY A13(%*)=A1+4:
DB+00¢& _

REAL ARRAY Al14(#)=A2~1;
DB+002

REAL ARRAY A15(#)=A1(5);
DB+033

REAL ARRAY Al6(#)=Q+3;
Q +003

REAL ARRAY Al17(#)=Q=-3;
Q@ ~003

REAL ARRAY A18(#)=S=2:
S =002

BYTE ARRAY A19(*)=AQ:
DB+034

END,

DB STORAGE=%035; SECONDARY DB STORAGE=%00054

NO., WARNINGS=000

PROCESSOR TIME=0:;00:02; ELAPSED TIME=0:00:08

Figure 3-2. Sample Global Array Declarations

3-12

All global declarations must be included, even for identifiers not referenced in the subprogram, and
they must be in the same order as in the main program. It is possible, although not recommended, to
use different identifiers for the same pointer, but you are responsible for keeping them straight. The
second method is faster and requires less space in the USL (User Subprogram Library) files, but does
not protect you against improper linkages.

where

GLOBAL
is used for pointers referenced in procedures compiled separately.

pointer-dec
is one of the following:

1. pointer-name [:= @reference-identifier [(index)]]

This form allocates the next available DB cell for the pointer variable. If the :=@reference-
identifier is used, the pointer is initialized to the address of the reference-identifier or array-
element if an index is included. The reference-identifer must be declared first.

NOTE

Global pointers can only be initialized to point to identifiers
which have been declared to be DB-relative, either explicitly or
implicitly. They cannot be initialized to point to identifiers which
have been register referenced to the Q, S, or X registers. Thus, the
following is not allowed:

INTEGER A=Q+1; POINTER B:=@A;
However, you can use an assignment statement (see paragraph
4-20) to dynamically set the pointer to such a variable unless it
was equivalenced to the index register.

2. pointer-name = reference-identifier [sign offset]

This form is used to equivalence a pointer variable to a location relative to another identifier.

3-13

Space is not allocated for the pointer nor can the pointer be initialized. The resulting address
for the pointer variable must be within the direct address range of the base register which the
reference-identifier uses. '

3. pointer-name = register [sign offset]

This form is used to equivalence a pointer variable to a location relative to a base-register.
Space is not allocated for the pointer nor can the pointer be intitialized. The resulting address
for the pointer variable must be within the direct address range of the specified base-register.

4. pointer-name = offset

This form is used only in privileged mode. It is the offset in System DB. The pointer reference
must always be subscripted and cannot be preceded by ‘@’.

type
specifies the data type of the pointer variables in the declaration. The type can be INTEGER,
LOGICAL, BYTE, DOUBLE, REAL, or LONG.

pointer-name
is a legal SPL identifier.

reference-identifier
is any legal SPL identifier which has been declared as a data item except DB,PB,Q,S, or X.

register
specifies the base register in a register reference. The register can be DB, Q, or S.

sign
is + or —.
offset

is an unsigned decimal, based, composite, or equated integer within the direct address range as shown
below.

Register Sign Offset
DB + 0 to 255
Q + 0 to 127
Q = 0to 63
S N Oto 63

(sys%gm table) + >=0

index
indicates the array element whose address the pointer will be initialized to contain. The index can be
any decimal, based, composite, or equated single-word integer constant.

Pointers are initialized with addresses of other variables or constants. The method is to follow the
pointer with :=@ and a data reference (simple variable, pointer element, or array element) or :=
constant. The address of the specified data item, adjusted to the address type of the pointer, is stored
in the cell allocated for the pointer. BYTE pointers contain DB-relative byte addresses, whereas all
other types of pointers contain DB-relative word addresses.

3-14

See “Pointers” (paragraph 2-20) for methods of referring to and through pointers. Pointers can be
indexed like arrays and can contain word or byte addresses. '

Pointers can be declared with all data types; if no type is specified, type LOGICAL is assumed. The
type determines what data type the object of the pointer is assumed to have. This allows objects
declared with one type to be accessed as another data type by accessing them through pointers.

Pointers which are not address referenced are allocated the next available DB-relative location and
can be initialized. Pointers which are referenced use the address of the referenced item or the specified
register relative location and cannot be initialized.

3-5. LABEL DECLARATION

A label declaration specifies that an identifier will be used in the program as a label to identify a
statement. Labels are referenced when it is necessary to transfer control to a specific statement; they
need not be declared explicitly unless the programmer wishes.

where

label
is a legal SPL identifier.

Labels are used to identify statements as follows:

LABEL L1;

L1:A:=B;

The syntax for labeled statements is given in paragraph 1-3. In SPL, a label implicitly declares itself
when it is used to identify a statement, as the object of a GO TO statement, or in a switch declaration.
It need not be explicitly declared in a label declaration except as desired for documentation purposes.
See “GO TO Statement” (paragraph 5-2) and “Switch Declaration” below for use of labels.

3-6. SWITCH DECLARATION

A switch declaration relates an identifier to an ordered set of labels. The switch is accessed as a
computed (or indexed) GO TO statement. The purpose of a switch is to allow selective transfer of
control to any of the statements identified by the labels in the switch declaration.

3-156

where

switch-name
is a legal SPL identifier.

label
identifies the statement to which control is transfered when the switch is invoked.

Only one switch-name can be declared in each switch declaration. Associated with each label in the
label list from left-to-right is an ordinal integer from 0 to n— 1, where n is the number of labels in the
list. This integer indicates the position of the label in the list. Each position in the list must contain a
label; null elements are not allowed. When the switch-name is referenced (see “GO TO Statement” in
paragraph 5-2), the value of an integer subscript determines which label is selected from the list.
Bounds checking in this selection is optional. Entry points are not allowed in switch declarations
Switch labels may not occur in subroutines.

3-7. ENTRY DECLARATION

The purpose of a global entry declaration is to specify multiple entry points to a main program beyond
the implicit entry point which is the first statement of the program. Each entry identifier must occur
somewhere in the body as a statement label, but cannot be the object of a GO TO.

where

label
identifies the statement to be used as an alternate entry point.

By specifying the entry point to the operating system, the program can be started at other than its
natural beginning. See “Entry Points” in paragraph 1-16.

3-16

For example, here is a sample entry declaration:

ENTRY P1,P2,P3;

3-8. DEFINE DECLARATION AND REFERENCE

A define declaration assigns a block of text to an identifier. Whenever the identifier is used in the
program thereafter, the assigned text replaces the identifier. This provides a convenient abbreviation
mechanism to avoid repeating long constructs that are used many times throughout a program.

where

identifier
is a legal SPL identifier.

text
specifies the block of text to be substituted when the define is invoked. The text can be any sequence of
ASCII characters; however, # can be used only within a string.

A define identifier can be referenced anywhere except within an identifier, string, or constant. The
text should make sense when inserted where the define is referenced.

At declaration time, a define has no effect on the compilation of the program. It has effect only in the
context where it is referenced. For this reason, undeclared identifiers can appear in defines; they need
to have been declared only when the define is referenced. Similarly, the define text is checked for
syntax errors in the context where it is referenced, not where it is declared.

Define declarations can be nested (define identifiers can be used in other definitions), but they cannot
be recursive (a define identifier appearing within its own text), since this leads to infinite nesting
when the define is referenced.

The number sign (#) terminates a define text only if it is not contained in a string. For example, the
string “ABCD# ”# is valid text terminated by the second #. Incomplete comments cannot appear in
DEFINEs.

Only one block of text can be assigned to a particular identifier.
For example, here are some sample define declarations and references:

DEFINE I= ARRAY B(0:1)#;
INTEGER I; <<INTEGER ARRAY B(0:1);>>

3-17

DEFINE SUM= A+ B+ C+ D+ E#;
J:=8UM; <<J:=A+B+C+D+E:>>

3-9. EQUATE DECLARATION AND REFERENCE

An equate declaration assigns an integer value (determined by an expression of integer constants and
other equates) to an identifier. The equate mechanism is only a documentation and maintenance
convenience; it does not allocate any run-time storage, but merely provides a form of consistent
identification for constants. When an equate identifier is used, the appropriate constant is substituted
in its place. When equates are used instead of actual constants, programs can be updated easily;
instead of replacing every occurrence of a constant, only the equate declaration is changed.

where

identifier
is a legal SPL identifier.

equate-expression
can be either one of or a combination of two forms:

[sign] unsigned-integer [operator unsigned-equate-expr]
(equate-expression)

sign
is + or —.

unsigned-integer
is an unsigned decimal, based, composite, or equated single-word integer constant.

operator
is +,—* or /.

unsigned-equate-expr
is an unsigned equate-expression.

The value to be assigned to an equate identifier is determined by an equate expression. Equate
expressions consist of operators (*,/,+,~), unsigned integers (including previously defined equated
integers), and parentheses. Evaluation of the expression proceeds from left to right, except that
multiplication and division (*,/) are done before addition and subtraction (+ ,—) and expressions in

3-18

parentheses are done before the operators that surround them. The value of an equate expression must
fit in a single-word or it will be truncated on the left. Since equate identifiers can be used in equate

expressions, a series of related equate declarations can be set up such that changing only the first
changes all the rest. '

Equate identifiers can be used anywhere in the program that an integer or unsigned integer constant
is allowed.

For example, here are some sample equate declarations and references:

EQUATE M=1N=M+1P=N+1;
EQUATE T=20*P/(20— P+ M);
J:=136*T;

<<M=1, N=2, P=3, T=3, J=408>>

3-10. DATASEG DECLARATION

The DATASEG declaration is intended for privileged users requiring an extra data segment (defined
as split-stack mode, section 8-1). It ensures the reliability of the generated split-stack code by
limiting the declared variables to explicit DB-relative offsets. Only simple variables, arrays, and
pointers are permitted as DATASEG declarations; no GLOBAL, EXTERNAL, or OWN declarations
are allowed. A variable declaration without an offset will be assigned the next available offset.

The variables defined within the DATASEG declaration are used in conjunction with the MOVEX
instruction and the WITH statement, as detailed in section 4-21A and 6-5 respectively.

T
e <
AL s .

e Gttt e i
betin e nlenin L
e i R e nonee
il e i Pl G

et S e . o s

S e el e

i e e
i e s

o oo : o
e it
s o

:
W

i o
. et il
" i Sy i
Wt i o L
T o S

e : e e
4 o ol G g ol
MPI E Pl | .
PR ; e ey
e e 7 - = <<‘ o

e e

s
Coninine

i

L

i
Gt e

iR
A
i

e
i s
D e
o
¥, i #

o
i i L
- . s . ; "
e o i i o e 3 s dine e L s s
e 3 i i .

o 0

i / i i . , ~ . m

e 5 2 o o " i & & o e - .
i i . i i o

. it
i it S
i K e e o
s 7 s e ’ Lt i - i
e P4k s « o . . . o
bl e o 1 B : : . : . o
L el e S
5 'GE e)

S

Gty
S

e f i L)
o e y : : ¥ !
s Sl % U R S L ED
e gt e T Nt ol
e
] X

LONGL=R+2; <<OFFSE

T

s
e s S o

dataseg-name
is an SPL identifier,

3-19

dataseg#
is an integer constant or integer constant expression,

type
may be INTEGER, LOGICAL, BYTE, DOUBLE, REAL, or LONG,

dataseg-variable
is a legal SPL identifier,

dataseg-offset

is the dataseg-variable followed by a sign (+,—)
and an integer constant.

3-20

EXPRESSIONS, ASSIGNMENT,
AND SCAN STATEMENTS |[

4-1. EXPRESSION TYPES

An expression is a sequence of operations upon constants, variables, and indexed items which results
in a single value of a specified data type. If the data type is logical, the expression is a logical
expression and logical operators are allowed within it. If the data type is numeric (i.e., byte, integer,
double, real, or long), the expression is an arithmetic expression and arithmetic operators are used
within it. An IF expression allows a choice to be made between two expressions of the same word size
based on hardware or software conditions.

Within SPL expressions, only variables of the same data type can appear on either side of an operator.
That is, an integer can be multiplied by an integer, but not by a real. The only exception to this rule is
the exponentiate operator () in arithmetic expressions; real and long data items can be exponentiated
to integer powers. In all other cases, the combination of differing data types can only be accomplished
through type transfer functions. For example, the function FIXR converts an expression of type real
into one of type double and rounds the result to the closest integer:

FIXR(real-expression)
A corresponding function, FIXT, converts real to double and truncates the result:
FIXT(real-expression)
Type transfer functions are not available for all possible iransformations. The following table shows
which transfers are provided and which functions should be used in each case. In some cases, it may be

necessary to specify nested type transfer functions (e.g., to convert from real to integer, either
INTEGER(FIXR(real-expression)) or INTEGER(FIXT(real-expression))).

FROM TO

LONG REAL DOUBLE INTEGER LOGICAL BYTE
Long | - REAL
Real LONG | - FIXR

FIXT

Double LONG REAL - INTEGER LOGICAL
Integer REAL DOUBLE | ---- LOGICAL BYTE
Logical REAL DOUBLE INTEGER | - BYTE
Byte REAL DOUBLE INTEGER LOGICAL | -----

4-1

4-2. VARIABLES

A variable is one of the items which can occur in expressions. Each variable, whether it is a simple
variable, an array element, a pointer reference, or the top of the stack, is associated with one data item
of a specific type. The address of any data item can be used as an integer variable since it is a 16-bit
signed quantity.

where

data-item
is a simple-variable, array-name, or pointer-name.

index

specifies an offset. The index is either an expression or an assignment statement of type integer,
logical, or byte. If an index is not specified with an array-name, a pointer-name, or ABSOLUTE, then
zero is assumed.

TOS
is the Top Of Stack

identifier
is a simple-variable, array-name, pointer-name, label, or procedure-name whose DB- or PB-relative
address is used as an integer value.

ABSOLUTE

is used to denote an absolute memory location. To use this construct, you must have privileged mode
(PM) capability.

The three most common types of variables occurring in all data types are the simple variable, the
array reference, and the pointer reference. Array and pointer references specify an element by means
of a subscript or index; the index must always be a one-word value (byte, integer, or logical). The index
value specifies an element index, not a word index. It is loaded into the index register and used in an
indexed memory reference instruction. Note that this may change the value of the condition code. If
no index is specified, the reference is to the zero element, which is more efficient than explicitly

ifyvi 1 3 : PR B . |
specifying 0 as the index since the index register is not used.

4-2

4-3. TOS

TOS is a reserved symbol that always refers to the top of the stack; it can be used anywhere a variable
can be used. When TOS is used on the left side of an assignment statement (TOS:=expression), the
normal store operation is omitted and the result is left on the top of the stack. If TOS occurs in an
expression, the contents of the top of the stack are used as the next operand. TOS must be used
carefully, since the compiler does not keep track of the number of elements pushed onto the stack prior
to encountering TOS. The data type of TOS is determined by context; it takes the type of the expression
or other operand. Thus, in one context TOS might refer to the top word, in another the top four words.
Note that TOS does not refer to the same memory location from one statement to the next, since S is
constantly changing. The default type for TOS is integer. A general rule for determining the effect of
TOS is to assume that TOS is a variable and then delete all LOAD and STOR operations for TOS. For
example,

TOS:=7; <<LOAD 7>
A:=TOS+6; <<A:=13>>

4-4. ADDRESSES (@) AND POINTERS

When @ precedes a simple variable, it specifies that the DB-relative address of the simple variable is
desired. All addresses are signed, one-word integers and are treated as such in expressions. When @
precedes an array identifier, it refers to the DB- or PB-relative address of the zero element of the array
(whether direct or indirect). When @ precedes an array reference (identifier(index)), it refers to the
DB- or PB-relative address of the array element. When @ precedes a pointer identifier, it refers to the
address contained within a pointer cell; when an index is specified, @ refers to the address of the data
element relative to the zero element pointed at by the pointer. For example,

BEGIN
INTEGER A;
INTEGER ARRAY B(0:10);
POINTER P:=@B(5);
A=@A; <<A assigned address of A>>
A=@P; <<A assigned address of B(5)>>
A:=@B; <<A assigned address of B(0)>>
END.

If the @ construct is used on the left of an assignment operator, it must be used with either a
pointer-name or an array-name of an indirect array and an index cannot be specified. This usage.

changes the address which the pointer contains. For arrays, this means that there is a new zero
element. For example,

@ A:= @ AQ1);
would make A(1) the new A(0). For pointer variables, the statement:
@P:=@B;

changes P to point to the location assigned to B. The various combinations using the @ construct and
pointers are summarized in figure 4-1.

4-3

POINTER P1,P2;

LOGICAL VAR;

P1.=P2; <<The object of P2 is stored into the object of P1>>
Pl.=@P2; <<The address in P2 is stored into the object of P1>>
@Pl=@P2; << The address in P2 is stored into P1>>

@P1:=P2; << The object of P2 is stored into P1>>

P1:=VAR,; <<The value of VAR is stored into the object of P1>>
P1:=@VAR; << The address of VAR is stored into the object of P1>>
@Pl:= @VAR; <<The address of VAR is stored into P1>>
@P1:=VAR,; << The value of VAR is stored into P1>>

VAR:=P1; <<The object of P1 is stored into VAR>>
VAR:=@P1; <<The address in P1 is stored into VAR>>

Figure 4-1. Pointers and Addresses

4-5. ABSOLUTE ADDRESSES

The ABSOLUTE construct can only be executed in privileged mode. It provides access to the contents
of an absolute memory location. The address (index) is loaded into the index register. If ABSOLUTE
appears on the left side of an assignment statement (ABSOLUTE(index):=expression), a PSTA
(privileged store) instruction is generated which stores the top of the stack (expression) in the absolute
memory location specified by the index register. If ABSOLUTE appears within an expression, a PLDA

(privileged LOAD) instruction is generated which loads onto the stack the contents of the absolute
location specified by the index register. For example,

LOGICAL L1,L2,L3,;
INTEGER A1,A2,A3=X;

L1:= ABSOLUTE(A1*A2);

ABSOLUTE(L2):= A1+ 5;

ABSOLUTE(A3):= A1+ 5; <<A3 is the index register>>
L1:= ABSOLUTE(ABSOLUTE(3));

L1:= ABSOLUTE(A3);

4-6. FUNCTION DESIGNATOR

Function designators are another of the possible components of an expression. A function designator
specifies a function (a typed procedure or subroutine) to be executed and a list of actual parameters
(values or addresses) to be passed to the function. The function returns a value of the appropriate data
type to the place in the expression where it was called.

4-4

el i " o

e ,g “*‘L "”' . -
>x»m(§;x‘

e

3

105
i =
et
G
el
i i 52 AR

“W
e
. ‘3: o

muw

b e
e
.

S ;9‘ i

,
(@,L, ; -

.
«i;v,:‘,‘, S

i
e e «x ‘d,xim

o
w%wMA
o
S
M%,Wmﬂ

ﬁu’ il
i il gl
e pTi Ww*, msv"'.,,,, it
e “"“f,'xsw el ey
fiivwiq«!(!?‘“i il ;,»«;;iwu e,
e % ‘,,x e
ot x(!met B
zscxf mmswv),@ i
- e B s~“"
h m‘:*“f’é:ﬁw:‘&vw;;;m%“;‘ ws?i“ ‘0
‘X"" X“ﬁwﬁ Mﬁ,zs . x;M,ox;vg;!xmxs;w;;‘slll'u.wxazmﬁwﬁix
" S il S«x!xﬂ“ et
A b b
B S
L o e ;»m;,,m.g;“xix‘;ﬂ i i i
«; xs, s sN L?; «xt,Mv;»g,m‘,,,(wn ,,“,,mwu @
SR i e e st m;; S
o wWWw ,, i e xﬂi"w @w»;mnm»
sm i Am i i
e ‘m it mnmsmm et b
ol i o w i ,«,,‘e,n,m
m?meg ﬁ' fwww
o

o

- s

m i e) W
il

vm&i
e
L

e

e i
s
w’f,iit,mx
,ﬂﬁﬁxyﬁﬂ“gsﬁm

R i
%mﬁ“”@%n
it e M
- ;

o
‘ﬁ e o
e
“aw
e
NN
i
mwm
b

il
e

ww‘ o .
sfﬂ,k,ux“{“f
e
L
Aﬁssy | m‘; s o
i sﬂx\!m'ﬂ« uxmxx?
‘" ‘i:f,i e ,,,f,w
!5

,u,;hmi)‘\

xf" o mm‘ -l
i “‘?wsa“ e e i V‘“""u i
i e el
“swwaw“m
; vam i
s
“"L s M
) Inas

;»ss

o ﬁw T
o Pl
e g ;M” jwswx o o~ ;L?x

S“ m&Or xk““)"
“%ﬁ:

e
"m i

s
i
e

g
U

. §@£ i
i i el
:myﬂwﬁw
e ‘:ww
el “ﬂ“‘“”fﬁ o
e s;é;; ;‘ i w‘,,,.lw’m
‘ua e ,,xx -

ww

i i
ngg;:,‘,,m

’;;,“xm

Sl
.ol
i s
R
s

me$‘
e

where

name

o
”u e

i
v 'gxmx»

Wmh"" e iﬂ
o
’,@wvvw‘,?‘; i

i
{0

i
i

.
A
T’W

L .
e
¢ Sﬁa nxk”“"‘ e *
e e ,,,;3 e ‘
el

g

]
w;xw“
xmx«ei e

e
»‘;z“I),gss)«xx,msiw
e

gan o
e
i
e
i
e
-

i
riin
5 ,,«3;"(!,,‘2,;
i
s

oot

Ry

o
xs;ﬂ(

i
: ,qsw‘
o N
i N

G AN

: swg:;“sw
e
dntelif

e
Sﬁ: i ww’
m,m;(“;am o WN
o m . ‘fofm«*"‘" b
v mqwﬁ ““ e
i x»l!!‘" & V
" A
e e xmw“&
i ‘ﬁ
iy 7
o
nwwm
W‘w

ﬁ‘fs
e o
L)
e i i R

m

i myiim“

ww “@;
e ssf‘ i
Ww‘www*b i
o
mew&w mm“

ot o ,th - i
i ik ,,,m r'm A
o e ?wu‘“
’%“,‘ - o s;»us i
o S ,‘Mx‘qm
T8 !;;m 5 3,?(%&“!‘ i,
“mu“s me””W
xwii ‘,g..mm; A ““““”
dhiie wﬁi‘,ws .
e i g,gnsm"‘,a

,m

Wms&m‘.m
S

¥ ,,m A
w“wmwM
') i

o
i
i fé

D

st e
i mx ,x« e

i
! 4
B : o it

2 wwﬁmm

Lt

g

i ;

R
e
?;x;vl;*;g‘,
L

L it
o

T i‘

,,5 Lt :
: ke
Gl e isx. i
i

!q,,,)mw
L

xxx 4 L

L
; T
i - i

i
Wm

WM ;
o

75 ; m
i w
) o - . . i
i i b i 25 4 i
%wﬂ‘ : Lo xw”
i
A susx“{‘;im‘% i . st el
G
s e o
5“4 S yuajxgw ;
s i S i
o e o
: it wx
i ;4@ i

et e
mwsgfi‘quxx
G

. L » i
! i :
e e S F?

:
P
; e

- uxx‘ ”
;“%m wxxiu ’”“
o |
me

L .

r«g i W
mx ‘ ﬂ
i ﬁsxmz;
- A
.

e .
e ,Lxxﬁxxka‘ et

sémw@m
i

e e
st

SR

G
o “;{“ o { "
- L - R e S
b ; i
s
o

o s

i é ‘
o

ol &
ke
S
e _m “"“‘,w:
e
G

;u@ xx!im(‘ A
f’**",ﬂ;

;xvmux«m
i i
qudlis

R mm(’
\;‘ x

L

s»" X;E, i

L

i

%ﬁiixfiw

P L

e
i

i
‘ixssré

e o
i o ﬂssfé

i

]
‘*pzxm

i ;
,mlw e ”“’" -

o
o

e iy f
il
S

AL
e

cE

=

-
=

o
i g
e

i

e
e

is th i
e name of the function procedure or subroutine to be executed

p

e

e o o
va‘.‘,. gﬁ e - i
gt i g
i xm“""u\xm& s o

i T

identifier

et
o

-
=

el

it

i

i
i
i
-
-

Briaats

1s a sl”lple'va) lable array-name po”ltel'”,a”le p’ ()(?ed re-name, Or l(lbel. I}l(DB' or IB'I elatlve
3 y >
> u >

subroutine.

index

specifies an array or poi
pointer element. The index i ;
INTEGER, LOGICAL - The index is an expression or an assi
> , or B . .] ssignment state
r BYTE. If an index is not specified for an array or pointer I:}f;l: > typ.e
, zero is

assumed.

arith C-]]
s e):’z:;‘lc ixgreszwn logical-expression and assignment-statement
uated and th i
e result is passed as a call-by-value parameter. The forms for these it
. items are

described fully later in this section.

The function procedur i
. e or subroutine must have b i
e B . utine . ve been previously declared (see “P
e otors on :(;lgtme Declarajclon in section VII). The actual parameters m‘ilst :r(i;iil}l:rehDeCIara-
e erermator I-T(;;m ss spe.c1ﬁed in t}le declaration; correspondence is checked left-t y 'e o
y be omitted only if OPTION VARIABLE has been specified ir? ti]o-nght.dAn
e procedure

declaration.

4-5

A stacked parameter is specified by an asterisk (*) to indicate that you have already loaded the
necessary address or value onto the stack. Labels cannot be stacked. If any parameter is stacked, all
parameters to its left must also be stacked. In addition, functions require that a 1-, 2-, or 4-word zero
(depending on the function type) be pushed onto the stack before the function parameters to reserve
‘space for the return value. Normally, the compiler provides this zero automatically; however, if
stacked parameters are used, you must arrange for this zero. For example,

INTEGER PROCEDURE COMPUTE(N);VALUE N;...;
ASSEMBLE (ZERO);
TOS:=A;
B:= COMPUTE(*)+ 1000;

For more details on calling procedures and subroutines, see “Procedure Call Statement” and “Sub-
routine Call Statement” in paragraphs 5-8 through 5-13.

Procedure calls use the PCAL instruction and subroutine calls use the SCAL instruction.

4-7. BIT OPERATIONS

Bit operations can be used in any type of expression. Bit extraction is the extraction of a contiguous bit
field starting at a particular bit position. Bit concatenation consists of extracting a bit field from a
specified position in one quantity and depositing it at a specified position in another quantity. Bit
shifts allow values to be shifted left or right, arithmetically, circularly, or logically. All bit operations
are performed on copies of the specified quantities so that the original variables remain unchanged.

A simple-variable of type BYTE is stored in bits 0-7. However, before performing a bit operation, the
value is loaded onto the stack into bits 8-15. Therefore, bit operations using BYTE simple-variables
should use bits 8 through 15 instead of 0 through 7.

Bit extraction and concatenation are defined for one-word quantities only. Bit shifts are provided for
one-, two-, three-, and four-word quantities. See “Assignment Statement” later in this section for bit
deposit.

4-8. BIT EXTRACTION

The purpose of bit extraction is to isolate a contiguous bit field from the 16 bits of a one-word value.
The result is a right justified value with leading bits set to zero. The maximum field that can be
extracted in a single operation is 15 bits. Bit extraction uses the EXF (extract field) instruction.
Extraction starts with the bit of the source specified by left-source-bit and continues to the right for the
number of bits indicated by length, wrapping around to bit 0, if necessary.

where

source
is a single-word integer, logical, or byte primary from which the bits are extracted. Refer to para-
graphs 4-11 and 4-14 for the definition of primary.

left-source-bit
specifies the bit of the source word at which the extraction begins. The left-source-bit is any unsigned
decimal, based, composite, or equated integer constant from 0 to 15 inclusive.

length
specifies the number of bits to be extracted. The length is any unsigned decimal, based, composite, or
equated integer constant from 1 to 15 inclusive.

See figure 4-2 for a sample bit extraction.

4-9. Bit Concatenation (Merging)

Concatenation permits the formation of a new value by extracting a bit field from one word and
depositing it at a specified position in another word. The lefi-dest-bit indicates in which bit position of
the destination primary to deposit the field extracted from the source primary. The left-source-bit
indicates at which position in the source primary to begin extracting the bit field. The length indicates
how many contiguous bits to extract and subsequently deposit. Bit concatenation uses both the EXF
(extract field) and DPF (deposit field) instructions which are described in the Instruction Set Reference
Manual.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A{g3=]l]0o|o|o|ofo|jo|o|OojOf[O|O|lO|O}O]1 1

o
e

where

source
specifies the item from which bits are extracted. The source is a single-word integer, logical, or byte
primary (defined under “Arithmetic Expressions” and “Logical Expressions” later in this section).

destination
specifies the value into which bits are deposited. The destination is a single-word integer, logical, or
byte primary (defined under “Arithmetic Expressions” and “Logical Expressions” later in this section).

left-source-bit
specifies the starting bit position of the bit extraction. It is an unsigned decimal, based, composite, or
equated integer constant whose value is between 0 and 15 inclusive.

left-dest-bit
specifies the starting bit position of the bit deposit. It is an unsigned decimal, based, composite, or
equated integer constant whose value is between 0 and 15 inclusive.

length

specifies the number of bits to be copied. The length is an unsigned decimal, based, composite, or
equated integer constant whose value is between 1 and 15 inclusive.

See figure 4-3 for a sample bit concatenation.

A B
0 1 2 3 4 5 6 7 10 11 12 13 14 15{ 0 1 2 3 4 9 10 11 12 13 14 15
JolJofofo]] 1[0! Lo [+ [T Tolo[n T+ [o] Lol ToTo[oo+ [+]
-~ [S—
nearawen [Tl oo |
0 1 2 3 4 5 8 9 10 11 12 13 14 15

Figure 4-3. Bit Concatenation

4-10. BIT SHIFTS

In the bit shifts, the shift-op is a mnemonic for a hardware shift operation. Consult the hardware
documentation for complete details. In general, logical shifts fill with zero bits as they shift left or
right; arithmetic shifts preserve the sign bit on a left shift, and fill with zeros, and propagate the sign
bit on a right shift (in other words, fill with the sign bit); and circular shifts do not have a fill bit (that
is, bits shifted off one end are shifted in at the other end). SPL does not perform type or word size tests.
If a multiple-word shift is specified, you are responsible for ensuring that the proper number of words
(2,3, 0r4) is on the stack. Note that if the shift count is not a constant less than 64, the index register is
used.

4-8

i

4

B = g ﬁ Hﬂ i i i IR el
B hy e e - ’ i b e
c;i;m o x;xm@ e o < 4

Siune

e
: o o
s mxmiw;ka, . e i e
i i . o . s .
”

iy

5

L
e
s

)

L

e
s i s
xxm;: s‘ i S Mxx«‘“;
s N
| n,m,w o i .

S s

o

Rial il e
- 5 : e !
ngm S ; s S il B
it i Gl ol x' s Gl i 9,“25@;!!,!‘“@4“4“a;
e e %
o .
e] x;xmmms s -
=

€0
i 3;

i

SAsanE A
-

=

;
G
i xmﬁ G
ass, o ;

g

i
o

o
e

.

BEse

s
. il

- é!ﬁ
o
Egmés

=
G

Seeen
e

& %é‘!?i’w’i L
@ﬁéé&

he s
S

onn
L

&
2 e

-

i anan
Vi

=
£ .

5
s
.
L
RS
o
Siieeiies

i
L
B

o

e

S
i
e

e
a

-
P

where

operand
is an arithmetic or logical primary of any SPL type (see “Arithmetic Expressions” and “Logical
Expressions” later in this section).

shift-op
specifies the shift operation to be performed. The shift-op is one of the following: LSL, LSR, ASL, ASR,
CSL, CSR, DASL, DASR, DLSL, DLSR, DCSL, DCSR, TASL, TASR, TNSL, QASR, or QASL.

shift-count
specifies the number of bits to be shifted. The shifi-count is an integer expression (described in
“Arithmetic Expressions” later is this section).

it i v %
8 i ; o ;
iy
. - - .
E i . SE “’3
o | 4 o " i i
e . o - .
. i . .
G i cann i o ms o
e i e g i T i
Reiil i - -
o i 2 i i
LrEiEnmn D i L i
- e 0 o o i
by s o o - i
i - ﬁgﬂm 1 'iﬁ“ g%g i i 5
i i 5 i il e i i
i nea i o o i
: - = it
i "*f“é i§§;‘ i i i o
i S o i
. . . -
Soan . =
. e 5
e i &
s e
i .
i e nmmismmms P
i o e enas L w,,‘[i%s;«,’yjsz
B e Tag . S’ﬁ ;
s e 3 T o o :
s e n S e m’ - .
LR y,,, e Ww; ; Bemn o Nx m "”“’&i‘ &lg";ﬁ wwcg; i xmmuwsv‘ s o |
i) n) s = b 3o t;xmxmm i i
e S H o : x 4 u M » Ri i -
e i o i B LR ¢ /i 5 o
R x?mk o e s .suwm ikl
i i xw«u«vem» s e i 4 xm,«w e it xmlw
i G u STYA s i @ »w] ' o
o i L] o R m Chm i
i e g m MR B e
o e .qu,,.w,ew e 5 e m h P e
S S G Spy bRl s <) .
i xi % i i otic: il
e a i Ry Sl e** 710 Q
0 o = o i i Mwwmmmmmwsxs 2) i
;sn«swmtm S . B i mxw;swmmnm g e e .
5 " e e s ey SR e g GEna
‘ - mm @gg 8 vi««t«m%xwmm - ble T m it Lett o i ww 7;’
. 0 “25;253“’,, & - e o . s
o wLMML$xv~«mmmmxvm“ anfﬁ;xm x;»m,wmﬁk,w e S R S LR
. LR e Do @;,mfm ¢ aﬁi : Right ..
N s el) e e i S :
i ”“Wmm I o 5 i Si?é!mst«bdin,&«Mm G e R n&mxivi,>!xu>!x$x e e s
L ,4,5 i . ey g xw ﬁvmm“ ' oo
o ummmﬁmw,;mxe,xmxb“, T ,Augﬁgﬂ?«;«s S 9 »vm) .r T g o mev’rmi; s,m»,ym s
. uwm XWQK!W(!‘HM?‘L e s ool i e ;;, w u:? o 1)x NG Lel :x;;a;z»m g
e = , gy e la eplsate et
mm;ﬁmx’ ‘m%:mté,;@ 4[3 & m”‘ § o !‘ E,ﬁ;gj;gs w miuum «u Mssxmvw 3 V‘M&wqun o mw »m. i «»iu« ; @ " «‘(:
i L.U;’m,‘;“; ¢ | "xx;awx g3 Q ok r“ N g N
S Sl SRR 5‘«“‘:“2: et | e j“i’: T f:;"*fffsx 1ar b S b
bt Frm,qx R e 00 g i i ,“ ke, 2 9 ,q,mw‘[ﬁ w«»;»x s m i >xt o ni’ e W oy
- fhe ie i FEVA e TPy Ar ic Sl i fuy !
- xz’f Sl e o lAD o 0 Ciy & L iy L
il AN o 8 sty ik *\, S A ‘t uu m:x M L T >, St e)
SR B o ézm«m,wm i «,L,;uika,« S SERA e 5 wmx%W,,«wrxzmu-”ﬂ g»»w SR w_ i a!!mmx« ;«»‘w 2w Mo e st
b,\u(‘,:)wu!’[h:p O S ey o ":‘E‘”’))"“;;Tr’ p L,:lum DA e t;muyuhS i&.m‘ 2 &
L et PR L aeaokriple Al’.].thme, 1C: h ht
i pal e ket ok e ,,,, e o B T 1S s m.ww«,w«»«.c..m»,,,, gt

xpmw“&\&“mm L

o «m rs
e di

o Nzi,«”fm,rwmm,xx'qmtimm
e oL
8L Sy mg; et
iww, it g onmt Sint
;

e w»u w,x;m.w L i iR L ,(m m.« o
asa m,? A ‘, w xv! m.‘ i3 245
i i g« i ,n Gl -\ n ,;m. % >

: . m« Db AL w AASE
b 3

6 gt
xw»u . »>«x>!vg,u>

S
S z,:z i

i 4
o o i s 5 m, L, S W p v
e L s NG AR t : »« %
sEm R o . Quadruple A ,1 ic. Shift B
i e u% BN i i i ,x” = 4 S ﬁ, Ak WA ,mxx W» x m ﬂm\n"«w»m B
s D ,w,ux»mm‘m,m M T P i o
S AQr . ,g;? o g wsyvss]:m “: S S tm&w i»' ,X«,I:}e
L e b i i & ; i t T,
. 0 o umﬂ,,h,(,kfﬁ ug P fwidle A mp i TL cooniit:
e R e B i bt o :
3 B e I i, o L L S Aot
: S L e R ¢ »,
e e e s : Ve ey
o SR e i b i Gebbite R

See figure 4-4 for some sample bit shift operations.
4-9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A&isLi3) [olofo|1}j1]1]o0]lo]lolo|1]o0

-
(=]
o
(=]

A&LSR3) |o|o}jo|l1|1]1]0]o]loj1]1]0|l0]|]0]Oo}oO

lost
Fd—ﬁ
A 1 1 1 0 (1] 0 1 1 1 0 0 0 0 1 0 1

A& ASL(3) 110}l0|]1]/1{1]0]jo]Jojo]1|lo|l1|[0o]o]o0O
lost
A 1{1]1]0fojol1]j1]1{0o]ofjolof1]o0]1

A & ASR(3) 1{o0lojojt1l1]1}lo0|0o]o]o0O
A o|l1}l1]1|lojojojo|1}0 |1
A & CSL(3) olojloj1|1}]1]o]lojojo}f1rfof1]1}t1in
A 1/1|1]o0flojol1]1]1]ojoflo]o]1}0 |1
A & CSR(3) 1of1]l1{1}{1]10]Jojoj1]|1|{1]0}l0}o0]o0

Figure 4-4. Bit Shift Operations
4-10

NS
4-11. ARITHMETIC EXPRESSIO

i ingle-

. ich results in a s
. eric data whic . dence
. uence of operations upon m;n;t_to-right unless higher prec: d. but

rithmetic expression is a seq cution of operators occurs ed across operators is not allOVY n,can
Aliuae of a specific data type. Exli1 tered. Type mixing of operanIl esntS of an arithmetic exPres;lsla,s o
va ncou T ic compo backwar

theses are e . the basic ¢ . heses or ba

tors or paren : . Primaries, . n parenthe
Spe:iransfer functions are prOVlde;iions arithmetic eXPressmnrsltls irrl) parentheses.
yp : bit expre ’ . t stateme
be constants, V&)lrlfablstsi’on designators, or assignmen

lue , un

(absolute va

—
— e
s “’Qﬁx;ﬁ"”‘“ ;zs e
T -
A o
Sl s g;??

i

S
.
&x

Mug»“:,“ o

L

* g 0 fxxmxsg;
. f st o i i Do ixx
’ ‘ L& o i G mxsam% ..
] Fi] B x«x@‘“m,‘ o - xmm i .
¢ i u,\ wm a0 G)
b e mw i
wum, i o ;ﬂ Sops e
: e .
?*,‘r'“”f “ﬁftcnm:uw ,;:x;";””. e ;mi{ &
J’ﬁw,, s zg««@« e g
e S

ey

i i iy
s
e

-
it

L
i m,xgc mw(m

T,,
.

et
o e
i i s

o

e
"‘,‘uxx,vx[mg i
.

.
'@gg o

§> Tniii
e
T @&,‘;ﬂ
Qv »qvi
i ,z“ e

. s i n.nssl
u.w,m S e ‘,
1l e

X ”&,

<

Sai
:-5@

e imsss‘
ik
i §"E“’“ P & ﬁ&xx
iR * i
1«;:;\»‘4»; i

L
i
i

-

5

;;

i
Shain
o i e e
% 9‘» !\"\ ﬁ! i
i S

w‘ "‘“’?Ixmx
i -
’]«

-
,,;éé'?.a,
e g

|
ﬁ@‘a

m’niii‘
LT
s ’*‘w»f"ﬁf;?:“
m?‘“‘s e

G S)
N

Bas
Hiao
a2
£

S

=
5

;

M §‘ﬂ

o mé{i‘m;

‘« i e o o

Lol . Lo |

S .

;mw,“““‘ m!**‘w i: <gm~w‘”‘ o

!Wi‘iwkn‘« 5 (&‘Mmq i i
$ i

b

i
ch;&m

fgii"'i e

il S
i iwwmxmx i
S
e 25 ““*ﬁ* 5
T T
e L S
, i

‘?“
.
2
‘m;w«mx N

o

i@i@

-

5
i :';xz“?f‘ '*?‘
xmmgggm i . mgx mgq .
o w;’*“}“;iiiiséé“’

e “‘"‘% e
e \

&hm
= "
-
i ?:mm"“}’%&‘
o Socne
e w
o

2
dieaed mhw
i % !él(

iz

—
;tié’“' :

i
i) xgmxm
i i u x e “X’
6 2]

: G
.
i
i m m“ v‘ X “
a2 r ,‘ mx,e’.,m%:w‘ Msi "”““’“‘
Y o g Mt
o ﬂm a 3‘,&?,,:2:9’”’ 2‘ o

is 23?3"
o y? |

o s
%
x? ‘ i o ,uwmmx""““
ww
5
v

T L ‘2“’““
A i fmfazem,
, 2.t “ e

i Gt ii!l’mmx
i i !K iy
K(kxm i ”Wiﬂmm N(l 3:5
s i oo
o Sy x" S e 4

: mum 5 5 wm, gtwmf»«wmwg: Ewi
Mwlxwmz; ("',;*;n?:« milfx,“«m i xxv?my;:z:w;»x ;;)gﬁz‘b‘gg;x wmwxm,m,
N;m?m T e sz;mxxw‘“‘“*"* G o

e e

mx&ﬁ
T

.

4 i

i G

]M i i ﬂ!xl i
e o

?Ef,
15:'

i
e
T

S
Is-;s e i:‘“

ss waxﬁmk
-
s
sl)
o~
foos ;ﬁsmw

\l%!i
a
«s‘
. ; o mm;‘
2 cane y?:;:m;w il
R A i s D g D e i
s i Nﬂa;;»ww&fama“‘;ﬁ,g,ﬁ;z;ﬁ:ﬁz;gm;@;g; e ”‘m:,s& s W
o i i i i ‘«;S&nwmn i

m e ‘i“ﬁ e it e i

W i "*"‘*5“ xw«msxmxm s ’;**mws”mww AR LA
m,,? ’?ﬁwii;!“azx;:“ n:g;w‘z,ﬂ;wm;m»;»‘z;;;‘;gg Bisiado b

i e O e i
son <L"”“'«mwmwixiiflxi“ﬁf, il
Lo e e

operator

GD.
iS +) 7*’/’A’ or M

imar: .
fsr l(’:rlle zf the following:
variable
constant
it operation .

? ;tritl’;emetic expresszo'n)
\arithmetic expression\
function-designator)
(assignment statement

. . . .
p

integer A integer
real A real
real A integer
long A long
long A integer

4-11

variable
designates an item whose value is determined at execution time and can be dynamically changed. The
form of a variable is described earlier in this section.

constant
designates a value which is established at compile-time and cannot change during execution. The
various constant types and their forms are described in section II

bit-operation
is a bit-extraction, bit-concatenation, or bit-shift as described earlier in this section. The value used in
the expression is the result obtained after performing the bit-operation.

function-designator
specifies a call to a procedure which returns a value. The form of a function-designator is described
earlier in this section.

assignment-statement

specifies that an expression is to be evaluated and the result assigned to a variable or variables before
being used in the evaluation of the outer expression. The form of the assignment-statement is described
later in this section.

4-12. SEQUENCE OF OPERATIONS

Arithmetic operations are ranked in order of precedence to determine the relative order in which
operations are executed. Higher precedence operations are performed first. When operations are of the
same rank, execution proceeds from left to right. The ranks, from highest to lowest, are:

1. Bit operations
Expressions in parentheses
Expressions in backward slashes (absolute value)
Function designators
Assignment statements in parentheses
(value assigned to variable and left on the stack)

2. Exponentiation (A, circumflex character)
(defined for integer, real, and long data, plus real to integer power and long to integer power)

3. Multiply (*) and divide(/) for integer, real, byte, double, and long data.
Modulo (MOD) or remainder for integer, byte, and double data.

4. Addition (+) and subtraction (—) for integer, real, byte, double, and long data.

The order in which operations are performed is determined by this rank. For example,

A-B+C Operators of the same rank are performed from left to right.

result

4-12

>
+
w

*
Q

Operators of different rank are performed according to their posi-
tion in the hierarchy of operators (highest rank first).

-

result
(A+B)*C Operators enclosed in parentheses take precedence over operators
outside of parentheses, even those of higher rank.
result
A-B+C*D E Left-to-right order is maintained until an operator occurs that is
of lower rank than the next operator or the next item is in
parentheses.

result

A (B-CY*D/E MOD F G

:

result

4-13. TYPE MIXING

Mixing of data types across operands is not allowed in SPL, except that real and long values can be
exponentiated to integer powers. Type transfer functions are available to handle conflicts (see “Ex-
pression Types” earlier in this section).

The type of operands determines the type of both the operation result and the operator used. Integer
operations are used when the operands are of type byte.

4-14. LOGICAL EXPRESSIONS

Logical expressions are evaluated in the same manner as arithmetic expressions. However, logical
expressions use more and different operators; allow only data of type LOGICAL and provide special
constructs, such as byte comparisons. The result of a logical expression is a logical value which can be
interpreted as a 16-bit unsigned integer or as true (odd) or false (even). The truth value of a logical
expression can be used to make decisions (see “IF Statement” in paragraph 5-6). Logical primaries can
be logical constants, variables, bit expressions, expressions in parentheses, functions, or assignment
statements in parentheses, or the complement of any logical primary. The operators LAND (Logical
AND) and LOR (Logical OR) should not be confused with AND and OR as used in the IF Statement.

4-13

T —— — o
SR ol . AT i e i
S e s e) i

i b 3 St i i ! i i
" 0) “ i s
. i . . e

L

i

5

i
o

i i
xx}sfg“j e e o o fg(“#;(,;%;m : o -
i ',"JI""“'7~5‘.«‘ i i SR L il
of a logical-expression can be either of the
i . e nadian : e g pEaa V ° L
e ; 4 it

i Lo
Gk o W o e i
i O S 4 . 3 e . i i i it S
. i i £ e i i b 3 i i
, o e e

o :

ol

i

i

s iy

ca e e . : o
e LA G e

o : R
. e

e
e

i
G ¥

il
)

L
i

g G e e L
ki i ; i o e i o -
L s i - e o . e @ .
Vinte] N i s S - P
e ko G o
e & it e
AU & i A s i
iy % i i G
. -

A
i

Bl W

i e

i i

L |

i

i

)

e - . x:(:; .
»LE P
i T szkksx;;\ i
L i

s fa

i
o

e

operator
is LOR (Logical OR), XOR (Logical Exciusive OR), or L

4-14

AND (Logical AND).

relational-operator

1
§> <, =,<>>=,0r <=

T
i
o

o

e
i
,m i

—

A
et

Bl W

i s

-
S
i i
e B
Mf,,‘a‘,n,.w L

st

;
i
L
"#" m»‘d o
i L
i
L
" ,: 4 ;é,«m
i A
iy i
o ;I‘ ..umn@ e
.

. i «« il
L

s
xmmxww
sl
i

o
’E‘J?Egss)
L
. i
L

%
s
i

e
e
i
.
i

e
.
X(x*

2 3

s i

!
X\A;sea

o

e
- '
.

G

R

o e
s o
xzm‘!‘w !
A

“"} sl

o R

G ;,mm;i
M m

»ma i
o um

B ’%u e
o mmw
;Sm)xw e
‘““ L zmm i
L i
3‘ (@xv« R
i sﬁ e

i e

;szzém
o

ol i
.

%) BWMM

5 e
faid

o
fn
(mex

un
il
i

i
bi
o il
is
i
i HX!MSxxiix*?‘(l’“ i ’ L
S me!x i
R
(it

" . i
e
“‘, ! xmtw’m wv:‘xgy .x,, v

T
.;xx« ”,va
T
»mﬂsx»’k i
A
, il e
R

xu)n

L i"
. 4
«;\5,;,,{, f i
S

= “‘é«xem i

%

x!m A

a
i
i

i d
R

Yoy
xg?‘ 4
s b
i i

g e Gl ‘:; e m

ke mm.m» #

.
&(sz 7 @j e
g hiEaT ’ e

smm« aen i
oni e ol
,(5

‘wsm;mm i
i i
0] ;. ! *ml s;

i
e
iy
i
i
i) i
L

i

i,
e

wxwxxix;xxwz
i

s

s b
o
e

G

s o

e LZ}Z& v& i
e
.

ool
b

s?%‘é?
i

i
i

o R

e g‘mmxxg
.

e msi
e
s
i
S
o i
i

M s
S;Bmx%gm

it
e

i
-
«mﬁii“sgg ,

mms 5
Sy
4)‘“d?

b
L

g
L
-

& mvmw
i
o

;x
i
o
e
et
e
S
o
S
ineifal ’;‘“‘
wss
il

gt
i
e
"‘”‘i e
i
<

T

i
e
o

e
i
i
;

o

S g
o iixé‘; 7

i
i

#;:s

Al
iéwx i
; 7

e
e
S

By
uwmmxww
L x

.mmwﬁxwu
@ e xxI
m

g
i e
i e

‘“; T

ns -
m Hi o
mm

..w o

e

:

i c;;mu
mxxmx&uxx

e

i
i

e
n
e E“ fiis i
e o ;ummw;
i
2 i
me
i

i
e

.
e
'

6
L,wmk &
xxx,mxig

M
0

et

e
s

,.Wx s .
, st

¢
mm??in i o
" sm e “"","ﬁ’;“’x ’ﬁ?ix@:
i
“l ’W“‘“Tfix m();y”

e
s i
e
nmwsx i

o

i

N

B i
f o
i smmﬁ el

it

i
e

, :?m,
i

o
:
“ e Slx;

i
i

i

e
e

e
’”“?mi Diredhs

i
e

i
r
”‘ﬂ

(i
;w

i
.

e
e
it
&

{ogical-operator
is + g
,—,/,MOD,** J/, or MODD

‘byte-compare
is a compari
son of
a byte array with another byt
yte array, a
,as

character
type
of a byte variable. See pa
ragraph 4-17

lower-value
is the lowe
r bound of
a range compari
parison. The [
' ower-valu

test-value

is the value whi
which is te
sted for bei
ne withi
g within the range of the lo
wer and u
pper values. Th
. The test-value

an i
integer expression

upper- Ual ue

o T

T
e
nwmlsii i vm"“
. . c
g

i

! N
i

. 7

o
i

r
. cumsx; " .:wmw
e
A g
mwwm“m i
i
et

. e
o
e

ﬁiss’ i

e m
S

ah
m; e
! "

e
-

Wu

Eerh
e
e

i
i
NX i
s
S m.n,% .
i
e

i &!iw,x«mmn .
il

o r:zn,

i
iy
i
e
i

i i i

xx’“w!ii it
i Awsui
i

mm,
i
r

i
.
;m& it
e
il
anm;m :

umz
i

i
i
. i

b

o
R
s

pi

o e mm

’“;”w i «05;* (i e

o i

o we

x e

i S
o

ux:«
e
i

i

o

ks

s
po
.

. "
aaan e
- i b i
; e
e
L
S sy
L e
v yﬁu : é’!”"“
-

s

i s
0 inixsxxx!mw

i
Lo
L
mxsin ;Fii -
. u‘””‘"“
e

i
s
B

Sm«!uh
R
ey wm :

e
i
o
i

e
A
&

tring co
nstant or constants, or a test of
, st of the

e is an i
n integer expression

e

is the u
pper bOu
nd of
a range
compari
parison. The upper-val
-value is an i

s integer

expressi
on.

R
e
iR
e mw&
S
T
S

31“5 B

e
o
i

i

S
i i
i

"
i
s

x
il

: W,q,mx,

;'
e
e

o

L

G

Mmmm? e
>;m«x
Lo i

i o
e

o

A
s
h
i e w,wmn i
iy i

i
e

G
iy dars

" “ wxmm
U e

i

G ;éx u:‘

ek
=

”“u-mw

o
e
g «a

g
]
o Sat m«x.

Ly
A

y i
S

M
i
N

e
% L

HElELEy

.

S,

e
ooy

e

m

i

s 3
FET

P i

"""' G mx, m»
i
otk

o

“
e

b
T G it

e

aterﬂt'ﬁ‘

e
e W

e
i
G

i

i

e
i .qw

.
,

e i

nuﬁ hA

g w

T
W {AE m; :
W

m,x i
et b

e
i

o m« o n), “

Do
#

e

ek

& P
s i 0

i
§

bt
o
i

1 S

i ,»; i

éqn

T w

il
o mmm
S

o v i
i
;

i

e

4 «(i o

i

m

The purpose ot a logical expression is to evaluate certain conditions and relations to produce a value
which can be interpreted either arithmetically (as a 16-bit positive number) or logically (as either
TRUE or FALSE). A logical expression is not a statement of fact, but an assertion that may be true or
false at any given time.

Logical quantities in SPL are 16-bit positive integers (see paragraph 2-7). A logical value is true if its
integer value is odd, false if its value is even (that is, only bit 15 is checked). The reserved words TRUE
and FALSE are equivalent to the numeric values —1 and 0 (% 177777 and % 000000) respectively.

In general, the result of a logical expression is left as a full word operand on the top of the stack. This
result is either a —1 or 0 when a relational operator is encountered. However, when the result of a
relational operator is used in a condition clause to make a decision (see IF Statement), the result is not
left on the stack but the condition code in the status register is set.

4-15. SEQUENCE OF OPERATIONS

Logical operations are ranked in order of precedence to determine the order in which the operations
are performed. Higher precedence operations are performed first. When operations are of the same
precedence, execution proceeds from left-to-right. All operands and results are type LOGICAL,
unless otherwise noted. There are seven ranks of operations as shown below:

1. Logical bit operation
Logical-expression in parentheses
Logical function-designator
Logical assignment statement in parentheses
NOT (unary one’s complement)

2. % (Logical multiply, one-word result)
/ (Logical divide, one-word dividend)

MOD (Logical modulo or remainder, one-word dividend) Note: The MOD and MODD op-

o (Logical multiply, result is type double) erations divide the dividend by

J/ (Logical divide, dividend is t double) the divisor, discarding the quo-

ogical divide, dividend 1s type double tient and yielding the remainder

MODD (Logical modulo or remainder, dividend is type double) as the result. See example with

the assignment statement, para-

3. + (Logical addition) graph 4-20.

- (Logical subtraction)

4. Algebraic and logical comparisons (=,<>,<,> ,<=>=)
Byte comparisons and tests

5. LAND (Logical and)
6. XOR (Logical exclusive or)

7. LOR (Logical inclusive or)
Integer range test (sugch as, I <= J <= K)

4-16. TYPE MIXING

You cannot mix data types across operands in SPL; however, type transfer functions are available to
handle conflicts. In logical expressions, logical operands are used except when the both operands are
arithmetic and the result is logical (compares, byte tests, and range tests). See paragraph 4-1 for the
type transfer functions.

4-16

4-17. COMPARING BYTE STRINGS

Logical expressions provide a mechanism for comparing byte strings to determine whether a particu-
lar relation between them is true or false. The test is made using the CMPB (compare bytes)
instruction. The byte strings are compared, byte by byte, using their numeric values until the
compared bytes are unequal or until a specified number of comparisons has been made. If the specified
rélation (<,>,=,<=,>=, or <>) holds, the result is TRUE (- 1); otherwise, it is FALSE (0).

The form of a byte-compare is one of the following:
byte-reference relational-operator byte-reference ,(count) [,stack-decrement]
byte-reference relational-operator *PB (count) [,stack-decrement]
byte-reference relational-operator string-constant [,stack-decrement]
byte-reference relational-operator (value-group,..., value-group) [,stack-decrement]

byte-variable (= ALPHA
=

NUMERIC
SPECIAL
EXAMPLES:
A<B,(5),2
B(5) >= *PB,(5)
* <= “ABC”

A <> NUMERIC

where

byte-reference
is one of the following:

1. array-name [(index)]
2. pointer-name [(index)]
3. *

array-name
is an identifier declared in an array declaration.

pointer-name
is an identifier declared in a pointer declaration.

index
is either an expression or an assignment statement of type integer, logical, or byte. If an index is not
specified, then zero is assumed.

count
is the number of bytes to compare. The count is an integer expression. A positive count specifies
left-to-right comparison and a negative count specifies right-to-left.

4-17

stack-decrement
indicates how many words to delete from the stack after the compare. The stack-decrement is an
unsigned integer constant between 0 and 3 inclusive. If not specified, a stack-decrement of 3 is used.

value-group
is either of the following:

constant
repetition-factor (constant [,...,constant]’)

repetition-factor
specifies the number of times the constant list is used before going to the next value-group. The
repetition-factor is an unsigned decimal, based, composite, or equated single-word integer constant.

The string to the left of the relational operator can be specified by a byte pointer or array reference
(DB-relative only) or a stacked DB byte address (*). The asterisk specifies that you have already loaded
the byte address onto the stack.

The string to the right of the relational operator can be specified by a byte pointer or array reference

(DB- or PB-relative), a stacked DB address (*), a stacked PB address (*PB), a string constant, or a list
of constants in parentheses.

The absolute value of the count specifies how many bytes to compare. A positive count specifies
left-to-right comparison while a negative count specifies right-to-left comparison.

The stack-decrement specifies how many values to delete from the stack at the end of the compare
operation. If a stack-decrement is not specified, all three values are deleted. The contents of the stack
during the comparison are shown below:

S-2 first address ,
S-1 second address
S-0 count

Byte comparisons can be passed by-value as parameters to procedures and subroutines; however, some
extra requirements apply:

1. If a stack-decrement is allowed but not specified and the byte-comparison is not the last actual
parameter, the byte-comparison must be enclosed in parentheses. For example,

P(A,(B<C,(3)),2);

2. Byte comparisons which use stacked values must be enclosed in parentheses and all parameters to
the left must be stacked prior to stacking the values to the byte-comparison. For example,

P(* (%= *,(5)));
4-18

Both types of operands result in a value of true or false. These operands can be combined using AND

Condition clauses are used in IF expressions, IF statements, DO statements, and WHILE statements.
and OR. If two items are combined with OR, the result is true if either item is true or if both items are

Two types of operands are used in condition clauses: logical-expressions and hardware branch words.
higher precedence than OR, but you can use parentheses around OR’ed expressions to override this

true. If two items are combined with AND, the result is true only if both items are true. AND has
precedence. Parentheses cannot be used around items combined with AND.

4-18. CONDITION CLAUSES

e e

L. ”mamm,n%mmm%@mw@,m%ﬁ; -

- . w%“%mw@
. -

s; . Baama

E@m@ {s mmmmma@wwﬁmm@nmmmmmm};x%

- ..
- .
-

e
- - @
-
. .
e -
o i i TRam L CEassas g
- .
...
- ...
- e
... -
: - e
.. o
i ... m
. - _ -
Lo :
i SEoTBan
IEids
. = -
B ocio SRR L
L ... _ _ _ _ _ @
- .
. T
... = =
...
Setegiiein . T amangire

- urmwmm ;,
SEessiaRaia e .

. |

- o

.

SEssinaEon
BEGEEEa -

=
- L oaEns L
. =

R

.

- e
,u ;fx ;mwﬁu@,mug&xwﬁnn,

S=s 4 : g
.

. SELiaes
=
fiiitiNig s

R S U 7
D .
mm%@m«wmmw - .
el L i 0
om0 Y
Giwena .. n
i
e

T
el

viiag

.

e
%

Tii

e .

.

- s,sxcss;smmmnm -

ing

1...OR condition-primary)

is one of the follow
4-19

ion-primary

it

ion-primary

it

l

CARRY, NOCARRY, OVERFLOW, NOVERFLOW, IABZ, DABZ, IXBZ,

, or >

ing

ion-primary

ing

mary [OR cond

lon-pri

it
it

l

f the follow
<> <> <

logical-expression

ion-primary
branch-word

(cond

cond.

ither of the follow
it
ither true or false. The cond

condition-term

where

is ei

cond
branch-word
is one o
DXBZ,

18 el

The hardware branch words test the Status Register, the Index Register, or the Top of Stack as shown
below:

OR and AND generate branch instructions instead of arithmetic ANDs and ORs. All parts of a
condition are not always executed since OR-and AND branch out of the condition as soon as the truth
value of the condition is determined. For example, if a series of items is joined by ANDs and the first
item is false, the whole condition is false so the remaining items are not checked.

NOTE

The CARRY and OVERFLOW bits are cleared after being tested.
The Condition Code, Index Register, and TOS are unaffected by
being tested.

Extreme care must be taken when using the SPL condition clause to check condition codes returned
from intrinsics. The IF>, I[F<...... constructs are only correct if no machine instruction that sets
condition code is executed between the setting and checking the condition code. The LDX, XCH,
STAX instructions, for example, are all used when SPL indexes into arrays. All of these modify the
condition code.

LOAD P+000
00022 ZERO, NOP
00023 ADDS, 016
00024 LDI, 000
00025 PCAL, 000
00026 ‘ AX.
00027 STOR PB 001,1,X

b

if<> then quit(0);

The IF statement in the above example does not test the condition code for the FOFEN procedure. It
reflects the condition code set by the XCH, STAX instruction.

4-20

1
ions

1ca

f log

.

x

ion o

inat

b

1S a com

. - . -
o Maaan e o
s e B

s i o e
. .
e -
e .

; - .

.
. e
= e
.

Expressions are used to determine values to be used in statements. The IF expression consists of a

condition-clause and two alternat

4-19. IF EXPRESSIONS

. The condition-clause

1ve expressions

false value. The two express

ts in a true or

1

ich resu

h words wh

pranc

dware
must be of the same word size (byte is treated as one word). If the condition-clause is true, the value of

11

expressions and har

f the condition-clause if false, the

i

value of the IF expression is the value of the expression after the ELSE. The definition of condition-

clause is given earl

’

the IF expression is the value of the expression after the THEN

1011.

t

1S secC

in th

ler 1n

.

e

o
A s s
-

s

=

e

-

iy

-

ol

e

st casas

e

i

B8 A
Sre

o

S

..;
.
P
o
S

B

MMM

o
2

determines which value to use as the value of the expression. The form of a condition-clause is

where
condition-clause

ion

is sect

in th

ibed earlier

descr

value
the value of the express

true-

-clause is true.

tion

f the cond:

i

on

18

value

false

is false.

-clause

tion

the value of the expression if the condi

18

4-21

4-20. ASSIGNMENT STATEMENT

The assignment statement stores the result of an expression evaluation into a variable of the same
size. Multiple assignments allow the same result to be stored in several variables. Bit deposits allow a
one-word result to be stored into a variable starting at a specific bit position.

where

variable
designates the item(s) to which the value of the expression is assigned. The form of a variable is
described earlier in this section.

left-deposit-bit
specifies the starting bit position of a bit deposit. The lefi-deposit-bit is an unsigned decimal, based,
composite, or equated integer constant between 0 and 15 inclusive.

length
specifies the number of bits to be stored. The length is an unsigned decimal, based, composite, or
equated integer constant between 1 and 15 inclusive.

expression

is evaluated to determine the value to store into the variable(s) on the left of the assignment operator.
The expression is an arithmetic or logical-expression whose result is the same word size, although not
necessarily the same data type, as the variable(s).

The result of the expression evaluation is stored in the variable(s) specified on the left side of the
assignment operator (:=) or (_). Blanks cannot be embedded between the colon and the equals sign of
an assignment operator. The result must be the same word size, but not necessarily the same data
type, as the assignment variable. Type BYTE is treated as a one-word quantity.

When a deposit field is specified, the expression result must be a one-word quantity. The rightmost
bits of the result, where n is the deposit field length, are stored in the variable starting with the bit
position specified. Note that only the leftmost assignment can be a deposit field.

4-22

An assignment statement can be used as a term in an expression. In this case, the result of the
expression in the assignment statement is first stored into the variable(s) and then used as the value of
the term in the outer expression. For example, the statement:

J=K+ L=+ 1)-M;
is equivalent to the sequence of statements:

I=1+1;
J=K+I-M;

Note that a semicolon is not used to terminate an assignment statement used within an expression.

Assignment statements can also be used as array or pointer subscripts and as call-by-value parame-
ters to procedures and subroutines. Array subscripts on the left side of an assignment statement can be
evaluated either before or after the expression on the right side of the assignment statement depend-
ing on the complexity of the subscript. Therefore, you should avoid changing the value of a variable on
the right side of an assignment statement if the variable is used as a subscript on the left of the
assignment statement. For example,

AD:=BI:=1+1);
is not evaluated the same as:
A+ 0):=BI:=1+1);

In the first case, I is incremented and then used as the subscript for both B and A. In the second case,
the original value of I is used as the subscript of A. In general, if a subscript which is used on the left
side of an assignment statement is evaluated without using the top of the stack, the evaluation of the
subscript is done just prior to storing the value in the array element. Subscripts in this category
include:

Simple variables D

Increment by one I=1+1)
Decrement by one I=1-1)
Addition of zero I=1+0)
Subtraction of zero (I=1-0)

For example,
A(I:=1+ 1):=B(:=1+ 2);

is evaluated as:

I=1+1;
I.=1+2;
A):=B);

Note that if the left-side subscript is itself an assignment statement, it is executed before the right side
of the outer assignment statement is evaluated even though the subscript used to determine the
element being stored into may not be evaluated until afterwards. However, if the left side subscript

4-23

uses the top of the stack, the evaluation of the right side expression does not effect the value of the left
side subscript. For example,

A(l=1+2):=BI:=1+1);
is evaluated the same as:

I=1+2;

I=1I+1;

Ad-1).=B(D);

If in doubt, you can use the $CONTROL INNERLIST option to check the code which the compiler
generates (see paragraph 9-2).

The following examples illustrate the use of assignment statements involving type DOUBLE data
and the logical operators**, //, and MODD:

LOGICAL L1:= 20000, L2:= 2, L3:= 3;

DOUBLE D1;

D1:= L1**L2 << D1:= 40000D >> : Product
L4:= D1/L3 << L4:= 13333 >> ; Quotient
L5:= D1 MODD L3 << L5:= 1>> : Remainder

Care should be taken to ensure that the result of the logical operators // and MODD is a one-word
quantity. Any other result causes an integer overflow.

4-24

4-21. MOVE STATEMENT

The MOVE statement moves words or bytes from one location to another. The locations can be either
DB- or PB-relative. Move operations do not change the contents of the source. There are three types of
move operations corresponding to the three types of hardware move instructions

e Move words MOVE, MVBL, and MVLB)
e Move bytes (MVB)
¢ Move bytes while alphabetic and/or numeric with or without upshifting (MVBW)

The MOVE statement can also perform as an arithmetic function by returning the number of bytes or
words moved. In this case, it can be used anywhere an integer function is appropriate; however, no
stack-decrement is allowed in order to avoid possible corruption of the stack with the use of expressions.

e
‘nw x”,

i
. - W
o i
i i
e ”ﬂg; i q - g%kJM . J

e e lm

“*i;!;ﬁ?r;é;m ”ﬁm@wif%;%

i E*“Q
e i
e
M@,) L
.u

)
3 e
e ,‘dxss
e rw“’" i

ol

Do ru ,,‘ e nmm e o e el AT Ao e N Ko B
R R TR ST it - hﬁtcs P »mmm‘ i «»ww;sx‘,,f‘@r&u“ G e e Ry

‘SS
i ik ‘m i 'c“
s %m Sl n M«f ml"f = e,
s L %M s i 90 K ’?”-mé e, m,x‘ i i
§ !kf“‘m 5,;; - “M e - e) g Lo -
P m:s“‘ ‘5? i S mx»,x,,,,wmmﬁ4 ;,;n»m i Wi el e '
e i 5 G i i
;L, s ok :3 kil i w,“ i g i)
w o = m i i o «x«m., ‘mw i A»w,;;m”‘i e 4 M s S i
M’“wu’&é}?‘%" x;;s, !xixl,z:#v ,,h i “‘;;!zum,x4‘*§&xiwu;,Xix“*xxy,z,‘f) “ um e %g . e “;L,
5 M“’v*@u ,ﬁ?swtm,"“mm sz. e “’«w@; o (. ; G
5 Mm ‘};x w5535,>~*vm,iwxw(i) Eg;;g;m,,)\,m ‘;gz»» g 7 Fi g
e Gt e : o g‘éﬁ;m . e
v o e i .
w;;w m o ggéw,;gaxm,% Mgm akm,;m,, iy E‘n@“w -
T . .
o i . i i
: L ‘“‘ML‘ "“‘W\«zs i e y R o i s,
L ,,,,mh,,,,, m :«x;.,wmm ,m "“""“**ﬁ?’““' g (ﬂxm,,‘ i Xmgx o f e
i e u“‘ o e wmu,“ D 0 S s o ; A
i i i ““‘s}‘ e iy k(,v‘”M ‘ i ﬁ-n 'jxu e i ”*‘?‘s:c; y e U
. ‘ g m ch i m e ‘, “xnm 3,,3;\,%:5?‘&::, S xnmm i TH iy s«xx & ﬁ 2
. Sk T i . { €
w;«w,mnmx.‘,“x*w,k, = mi‘m,g H‘u,m;z\m “""“‘m «M‘*mu‘ 'i,;g;x& ;‘i"“‘wvs i L ,;g»;,w,w«m . e “m“"“*m‘m méﬁ‘ m 5”'“‘%2& mnﬂf::;rgww*us “‘*‘i;vmw“
e e S i it M, Hihing e i i i
o s e b L L . ks
i P el fibm,f,”u ! s i o ‘Ms s n"‘“*‘isv@ >«m“" i “‘“*mzjrg*""‘m e ‘m?
L M o “*m?i,"’%m i ﬂw L e et e S L fo L %xxkxwf)ﬁa,«.kx,.xXM,,
i L x;wwn i “"”iuu,,,,;:“’mmf:‘:iMxxm m,,,,k L s ,3'"‘MW:“‘*;**m,s:;;;;:;m““‘w . «w..,j&xxm,,“;;s« S, i
e ; ij“ﬁ ol “ :« o m‘ "ﬁ‘i“m; g{;“'“ “‘*x ‘wxm%;‘mn o ;:; e “m‘ (mx;, éxm ‘M ;‘m i ‘m;;s; s w A i
i 2 i i # % i ol it
= cr S e ézzwﬁw-w e o
oy o e i ;q e «;,,,, e %m
L Da s L B), i - e n,,,;’ xesw
S b e . ool s x..g e B
g{w‘aﬁ 3 ‘!ﬁ;ﬂ s xm&““m,‘i;‘g}? i x»; gty b e ug?"
i e e S e e e Sl
i &; i xhxxxvgg&t,x,,h L 55&,,,““« g ol “:;xq e i sgm A T m@”*!
L s Gl o g ?,M,M R xmx'm»“, ﬁ:ii’:‘ o L e i
s s e kﬂ;a,«,; S ,;;-sim,, mixx.:;zzss@‘ - ‘«“&::ws;?;:i:* s S
i e ey sx i i
i &%M; / 5 . &’Zi‘;‘gﬁ’&‘x;g“; s o e %’“w - .
e i i Ut i 2 i e (m *Fm, ‘“Ng; s
el e KM‘Q it xx - e e i L Leee i . i
S i "“”’ ‘s %‘“Hrs s i s"”kfﬁi?‘ o x“m}“ﬁ@ ““*m i
i o el ,m i s“‘*» u.,‘, 5 e
g Bod N m,m“ i m i s i Bl 0 i il f”‘ i)
xxumz«&;w;xgnf i “xm,(‘,gijfum e o '*é‘wi‘m i ,;x i g%m,) s B imé“ﬂm
; e ¥
e it g
B s o B B
i % N f i i
m‘ »cm, xm, e ny‘m“‘*ﬁ ’ ssw i, "“rx,iny, .
gm *\-« & ﬁum ,,\ i 2 o ‘(?ﬁi i m‘?fix I i,a:xlmx;xg “*;; 5‘?,‘
L OU L] X;;;g& i =
n;u vwx, i &xxr % TSiharisny e i bt el
«.qi, fxfiﬁ”“‘“‘* “”‘"‘5‘?"““” ‘s “’”‘** “’“‘ xuxci‘«?,f\w e nf “,E‘ »ii‘éxtzmiéf,mf" ; fiiii‘gfi“’ s“”i : s
; b i 5 Celtadih e
i J()) Y] e s&f;‘“’”wng,x’“iw e ,ﬂw 4!;%2,!;9& ;;yg w) :;htimny bxxxg“;};x‘m
S e gt T T s R e | m_“;’ L Lo
ot u,w,,,ggw e W e m,»mﬁév e e : ; L o
e “mm e R m,,“xx L ,,:fu mmnm,x“"jﬂ z bm«‘ o e m“‘
L ’«xm s Voo < AR 1. ,x, i S m"\x(m e "\!xm ﬂmx e uf"“" i
AVIA i*aw A VL L. S :;s;x;z’;::‘?:““’:;' f? ',' s S,J z-‘«‘;;»,x,zi;a::w
i it i M m “m % (i '“ it &xx G it & e f iy
L ““m LA the i i B Lt xmm : i . e .
0 ‘m,,,;;:,m,:xm.,:, s ‘,smggmm X:n,; m...;;g;«swX,L,»A“,,.,f;wxss‘;z,,x,,wu;; m,m;‘m«*gf“gsxmiwxxmu'ﬁ‘ L \gg, i L **w,sg?;,xf,zm;"* %?.“xx!s':::?‘
iy e e B G , ool e S i g S o i 2 0 g
ity Ol g MM) o i . i il i wn, i m,« i m,k,, ey L el ot e i i, ‘1;
L “, s i si‘;;;;w:;«sf»g: o L‘g ,,,m"g,n S e e
Pl a"z L x,,;;v W L,f««-WW,;u»«i«(;;;;= a i e ;;ﬂ»»ﬁ’qz;wsme‘xfi‘ﬂm e e ‘lfiixwii‘%l‘éi;;i? |
! @ arit ﬁ]; ’ﬁ waa v w«m’*:‘gnwm,‘mfm“ma;;,:t; m,\”;,mwxx’::}”m - M§§x’§§x;5b«»w‘;§* o »»m,ggxxm
o 3 m e R i o o i G o ,“" b L Vi
)Mxxx " ‘xmsm u xx, L AT M gy m e W i S i i M i
cn “M;!xwm;“'“m ik ,‘,‘;< s ;“y:mxwxfxf’xeﬁ e e Al e i R mrgmsiw L “"1“&;(;;‘;‘“““;;«2, b e
e N i s el s e e i - m“”‘“w Al i Ca
o s,.mq,:! hﬁw,ﬂikm W?“é? i f;g; ,,,“fvz\qmuw“ag(wfk;nmmxiiws gjiw»,»,)‘nK;:'x,x«x,;“(‘;i:»ﬁ3:),»;,%3*“,“,% ,L,QE::W gw«mx, b (M Vm,, ‘& ”‘;: g ,,“ s id;xw ,,» L i H e
s ,swggg;wQnexx,.,,,;m o ;.4,,,;)?;».wuiii’“w,m?*“swmf&,ggws g b "wsixi’;im (;;:' n»sf?ix“‘w «>.JIZ§§‘*'m;?E’"rm-m"”;’tﬁ:*“mmwum, Arditio ‘!‘“zi?«w;“*nm:w f“’*v*n§f‘§xx, %’v‘{i"‘w i «»3«;;“*»' i m,‘;;ém D
e 4 o mxss,xx“;’,“,‘ >>““((4;“l«" g §f; *“M SN i B 5 unm‘;*;m S im. s “‘M*,”’n,mim “Mnm‘,«);:““‘ e “*i kg e s uny‘;q"“m hf“z“kim;J;““ﬂis““"“)mx« Vs & m,,m!mx ","gt;m ”“!%!&“““
. : it R o @ P Al , - D, ol i 4 e 00, o S B £
- s B VE WL e g T § ‘, i ; S G i i 2
T bt Hobi—k a8 S b i o 3 LR 8 i nx«m i G S
w:),msw*vsgkpm‘m,m"'w,,,, AML Y b ey Lo s N EL S e e “"“%‘,::: ”Wlm :
(RR M Nt fi i i 2 R L i, m.\s, AR o Eag o e
i o;»g‘m‘*nr:{xx(;w”;Xw»m,’msxy 3 ”‘ivhm By ‘mu Lo x »(«;» i 5 wm ";«onw, o s‘",:’ ,(;xgm,x,, A wwm s ot i ;“M;‘w;(m”'umxfuii’:‘:' ,“:‘!’omr " ik i g,{’ 2 o
Mu % «u,“m o i i mw“ b 9y A . 4 [N e e i i
< n,z&,%m IE’P‘ M VE D: p 1V ,«E% i 8 I anny L S e ,“w,,x,,
g L ,x B, r i 3 ; o s

;mm,,,w?s s
s

x P U
i e ! um i, A it e B ik s
S ol M ol B D
; A0V ,,“»-“ 50 b TNV =t VPl JIN Gt ‘3,«;, ik o q.i‘,h‘,t, Lonhe «.’,"11““"‘“'«
it N, s okl S M T S b e S AR e Y e RN e
SN S e ST T e e e s SR L
??‘wmiii‘««»nimi i !1”52“‘“!‘»,3 “"“"‘*’?fzf*f““vf’»:’i’ (e ‘uif““ 'er ki o "“5»3«?‘*1’“"‘ oy ”“*wiifixli‘ "g‘ml"“"‘iim",33:3"‘“3?;“”"%3"*"«w» Jiz”“’”*ﬂ“’““‘“Xﬁ”“"' i “imii‘«?“ y S G S
v e e e R i e S S e e e
e R Lt vt et ey J‘“'mu’, S g e e il"" e S a0 R W et e o
o ’31,,,”’MLJ”»v’mxff‘W»,m T ’*ixxx,.<,,f,"1m L xuwwm,f‘,««u«,‘, i M,;ﬁf«M E A ‘j»* Gup ki 5 e g «w,h,m, p«m,tk,,j»m,.k P
BB s S i i

where

destination
specifies the starting location to be stored into. The destination is one of the following:

array-namel (index)]

pointer-namel (index)]
*

4-25

source
specifies the starting location of the item to be copied. The source is either of the following:

array-namel (index)]
pointer-namel (index))

NOTE

Destination and source addresses are byte addresses for byte
moves and word addresses for word moves.

array-name
is an identifier declared in an array declaration.

pointer-name
is an identifier declared in a pointer declaration.

index
is either an expression or an assignment statement of type integer, logical, or byte. If an index is not
specified, then zero is assumed.

count
is the number of bytes or words to move. The count is an integer expression. A positive count specifies
left-to-right move and a negative count specifies right-to-left.

stack-decrement

indicates how many words to delete from the stack after the move. The stack-decrement is an unsigned
integer constant between 0 and 3 inclusive for a MOVE and between 0 and 2 inclusive for a MOVE
WHILE. If not specified, a stack-decrement of 3 is used for a MOVE and 2 for a MOVE WHILE.

value-group-list
is either of the following:

value-group
value-group, value-group-list

value-group
is either of the following:

constant
repetition-factor (constant [,...,constant])

repetition-factor
specifies the number of times the constant list is used before going to the next value-group. The
repetition-factor is an unsigned decimal, based, composite, or equated single-word integer constant.

condition
specifies the criteria for continuing the move to the next character. The condition is one of the
following: AN AS, AN, or ANS,

4-26

The move statements in SPL are machine dependent because they are based on specific hardware
instructions.

The first reference after the MOVE is the destination; the item after the assignment operator (:=) is
the source. INTEGER, REAL, LONG, and DOUBLE arrays use the move words instructions whereas
BYTE arrays use the move bytes instructions. When the source is a string or a list of constants, the
constants are generated in the code stream and moved from there. The syntax for the list of constants
is the same as for a list of constants used to initialize an array in an array declaration.

Where * or *PB appears in place of an address, the DB- or PB-relative address must have been
previously loaded onto the stack by the user. The source can be PB-relative except when the
MOVE..WHILE statement is used. The destination cannot be PB-relative. If both addresses are
stacked, a byte move is assumed.

The count is an integer expression that specifies the number of words or bytes to move; a positive count
indicates a left-to-right move and a negative count indicates a right-to-left move. At the completion of
the move, the count equals zero and the addresses have been changed to point to the character fol-
lowing the last character moved.

After the move operation is complete, destination and source address point to the next word (not moved
or overlayed) and can be examined, stored, or left in the stack for use by a subsequent MOVE or SCAN

statement. The stack-decrement operand is then used to delete 0,1, 2, or all 3 of the parameters from

the stack. A blank stack-decrement field generates an automatic stack-decrement of 3 —delete all three
values from the stack. Count always equals 0 and can safely be deleted (sdec = 1). The stack-decrement
mechanism is used for all move-scan statements.

The following code sample illustrates the use of the stack-decrement operand to return the number of
words or bytes moved.

BEGIN
INTEGER LEN;
BYTE ARRAY BUFF (0:20);
MOVE BUFF:=“ABCDEFGHIJKLMNO”,2; < <2=RETAIN DESTINATION ADDRES*
LEN:=TOS-LOGICAL(@BUFF);

END

4-27

The stacked values used by the move words and move bytes instructions are shown below:

S-2 destination address
S-1 source address
S-0 count

The stacked values used for a move bytes while instruction are:

S-1 destination address

S-0 source address

In a MOVE ... WHILE statement, the condition specifies the condition for continuing the move to the
next character. The conditions are shown below:

A Current character is alphabetic
N Current character is numeric
AS Current char~rter is alphabetic; upshift if lower case

AN Current character is alphabetic or numeric
ANS Current character is alphabetic or numeric; upshift if lower case

The normal checks and limitations that apply to the standard
users in MPE are bypassed in privileged mode. It is possible for a
privileged mode program to destroy system integrity, including
the MPE operating system software itself. Hewlett-Packard can-
not be responsible for system integrity when programs written by
users operate in privileged mode.

4-21A. MOVEX STATEMENT

The MOVEX instruction is intended specifically for privileged users requiring extra data segments
(see section 8-1, split-stack mode). It facilitates the writing of high-level code increasing its reliability.
This instruction performs word moves only, not byte moves. Three machine instructions relating to
data segments are generated, depending on the move. They are as follows:

MFDS Move from extra data segment to stack

MTDS Move to extra data segment from stack
MDS Move between extra data segments

4-28

If the move is confined to a single data segment, a DB-relative MOVE is generated. Please refer to
section 3-10 for information about DATASEG declarations.

R G T R
e o o x e
i

| g
o -
e e
, -
g L omae s . i
Hi?“‘“‘gu s Glmiat it e
o el ol e e
S L
’ il b
S
g g Uk fnzﬁgs‘ i
(destination [,offseth
- v AHEo 6/ O 1,971 s€ed)
e e S
e S pe sttt o
e dsouree [or]setl)
e ey :ﬁk?igmhﬂa’ﬁshv im0
i i t;éi:‘.;;x;fﬁhﬂ;m "‘%"‘M i | e
w0 £ g
Lo
e
el i
el g
- i PRGN T s
. S e
i n gt b o el i e
- s ey e e

i
i

.

Gy

)

i
8
e T
Eonienan
L ;&Mix il

o
i

.
)
s Sl T e e
il A e i
i e e

e
e

i

5
) ot 0
i iy
sl 5
L

‘ -
b -

where

destination and source
specify the starting location of the words to be moved (source), and the starting location where the
words will be stored (destination). Locations must be one of the following:

Either DB-relative pointers (for MFDS and MTDS), DATASEG or DATASE G-relative identifiers (for
static XDS moves), or integer expressions (for dynamically calculated XDS numbers). In the latter
case, DATASEG-relative identifiers are not permitted in the expression.

offset

(Optional) The beginning offset into the XDS. It can be either a constant or an integer expression that
is valid within any containing $SPLIT or WITH. An offset is not permitted when the pointer is
DB-relative (as opposed to DATASEG-relative).

length
is the number of words to be moved.

stack-decrement

is an unsigned integer constant indicating how many words to delete from the stack after the move. The
default value is 5 for MFDS and MTDS, and 4 for MDS. For any extra data segment move, the maximum
value is 7. If a stack-decrement larger than 3 is specified for a DB-relative move, a warning is generated
and 3 is used.

4-29

4-22. SCAN STATEMENT

The SCAN statement is used to search for either of two specified characters (the test and terminal
characters) in a contiguous string of bytes without actually moving any data. When the statement ends,
pointers and indicators are left to show what was found and where. The scan statements in SPL are
machine-dependent because they are based on specific hardware instructions. There are two scan
operations corresponding to the two hardware scan instructions:

¢ Scan until a test character is found (SCU instruction).
* Scan while a test character is found (SCW instruction).

The SCAN statement can also be used as an arithmetic function to return the number of bytes or words
scanned. In this case, it can be used anywhere an integer function is appropriate; however, no
stack-decrement is allowed in order to avoid possible corruption of the stack with the use of expressions.

where

byte-reference
is one of the following:

array-name [(index))

pointer-name [(index)]
E3

array-name
is an identifier declared in an array declaration.

pointer-name
M o . A2 LY 3 § 2 D | 1 .
is an identifier declared in a pointer declaration.

4-30

index
is either an expression or an assignment statement of type integer, logical, or byte. If an index is not
specified, then zero is assumed.

testword
is one of the following:

A decimal, based, composite, or equated single-word integer constant.
A simple-variable of type INTEGER or LOGICAL.

“test-character”

“toerminal-character test-character”
*

terminal-character

is any ASCII character. Note that “ is represented by “”.
test-character

is any ASCII character. Note that “ is represented by *”.

stack-decrement

indicates how many words to delete from the stack after the SCAN. The stack-decrement is an
unsigned integer constant between 0 and 2 inclusive. If not specified, a stack-decrement of 2 is used.

The byte-reference which specifies where to start scanning can be a byte array reference, a byte pointer
reference, or an asterisk (*) to indicate that the DB-relative address is already on the stack. PB-
relative arrays cannot be scanned. If either an array or pointer reference is specified, the address is
loaded onto the stack.

The testword is an integer or logical simple variable, an integer constant, or a one- or two-character
string where the first character (bits 0 through 7) specifies the terminal-character and the second
character (bits 8 through 15) specifies the test-character. If no terminal-character is specified, bits 0
through 7 are zero-filled. In both cases, each byte in the two-character string is tested against both the
test and terminal characters.

In a SCAN UNTIL, the scan continues until either the test-character or the terminal-character is
found. In a SCAN WHILE, the scan continues until a byte is found that matches the terminal-
character or does not match the test-character. The carry bit in the status register is set to 0 after a scan
to indicate that the test-character was found; it is set to 1 to indicate the terminal-character was found.
This bit can be tested with the IF statement:

IF CARRY THEN ..
IF NOCARRY THEN ..;

The carry bit is cleared after being tested. The stack-decrement specifies how many words to delete
from the stack after the scan operation. The stack-decrement is very important in a scan operation
because when the scan terminates, the address of the terminating byte can be left in the stack. The
stack for a SCAN UNTIL or a SCAN WHILE appears as shown below:

S-1 byte address
S-0 testword

4-31

A stack-decrement of 1 deletes the testword but leaves the byte address which can be saved as follows:
SCAN’STOP:=TOS;

An empty stack-decrement field generates a stack-decrement of 2 and leaves the stack as it was before
the scan statement.

The following code sample illustrates the SCAN UNTIL operation. After the last statement shown, the
pointer is pointing to the first “0” character.

BYTE POINTER PTR;

BYTE ARRAY CHAR (0:30) := “AAAAAAAAAAAAAOAAAAAAAAAAAAAAAAY;
SCAN CHAR UNTIL “Z0”,1;

@PTR := TOS;

In the SCAN WHILE example below, the address of PTR will point to the first non-‘A’ character.
BYTE POINTER PTR;
BYTE ARRAY CHAR (0:30) := “AAAAAAAAAAAAAAOAAAAAAAAAAAAAAAA”,

SCAN CHAR WHILE “ZA” ,1;
@PTR :=TOS;

4-32

PROGRAM CONTROL STATEMENTS

5-1. PROGRAM CONTROL

Program execution normally proceeds sequentially from statement to statement. By using control
statements, you can alter this sequence by transferring control to another statement, by executing a
group of statements (a procedure or a subroutine) and then returning to the original flow, or by
repeating a pre-determined group of statements. Statements in a program to which control is to be
passed are labeled by identifiers preceding the statement. A colon (:) is used to separate the label from
the statement. Procedures and subroutines are named by identifiers in declarations (see section VII).

This section covers the following control statements:

GO TO statement

DO statement

WHILE statement

FOR statement

IF statement

CASE statement
Procedure call statement
Subroutine call statement
RETURN statement

5-2. GO TO STATEMENT

The GO TO statement is used to transfer control to a labeled statement. There are two forms of the GO
TO statement: the unconditional form and the indexed form. When an unconditional GO TO statement
is executed, control is transferred to the statement specified. An indexed GO TO statement is used to
invoke a switch to selectively transfer to one of several statements.

where

label
identifies the statement to which control is transferred. The label is an identifier which is used to label
a statement other than an entry-point.

switch-name
identifies the switch to be invoked. The switch-name is an identifier which has been declared in a
switch declaration.

index
indicates which label in the switch declaration is to be used. The index is an expression or assignment
statement whose result is a single-word value.

The three forms GO, GOTO, and GO TO are equivalent. In an indexed GO TO statement, bounds
checking is performed on the index value unless an asterisk (*) is used before the switch-name.

The object of a GO TO statement in the main-body must be a global label or switch-name and the object
of a GO TO statement in a procedure or subroutine must be a local label or switch-name. You cannot
use a GO TO statement to transfer into a procedure and you can only use a GO TO statement to
transfer out of a procedure if the label has been passed to the procedure as a parameter. Switches
cannot be passed as parameters.

Switches are invoked using an indexed GO TO statement; the index is an integer value that specifies
the label desired. Labels in a switch declaration are numbered consecutively starting with 0. Nor-
mally, if the index value is less than zero or greater than the number of labels minus one, control is
transferred to the statement following the GO TO statement. However, if the asterisk option is
specified, bounds checking is not performed and invalid indexes cause unpredictable results. When a
switch is invoked, the index value is stored in the index register.

5-2

NOTE

A switch cannot be invoked within a subroutine nor can any
labels assigned to a switch appear in a subroutine.

Clrl
(VY]

5-3. DO STATEMENT

The DO statement is used to repeatedly execute a statement until a specified condtion-clause becomes
true. When the condition-clause is true, control is transferred to the next statement after the DO
statement.

i

i
i

s

where

loop-statement
is the statement which is executed each pass through the loop. The loop-statement may be either a
simple or compound statement including another DO statement.

condition-clause
determines whether or not to execute the loop-statement another time. See paragraph 4-18 for the form
of a condition-clause.

Note that a semicolon is not used to separate the loop-statement from the reserved word UNTIL.
After the loop-statement is executed, the condition-clause is evaluated and tested. If the condition-
clause is false, the loop-statement is executed again; if the condition-clause is true, control is trans-

ferred to the statement following the DO statement. The condition-clause is evaluated and tested after
each execution of the loop-statement (the loop-statement is always executed at least once).

5-4

5-4. WHILE STATEMENT

The WHILE statement is used to repeatedly execute a statement as long as a specified condition-clause
is true. The WHILE statement differs from the DO statement in that the condition-clause is tested
before executing the loop-statement instead of after and the condition-clause must be true for the
loop-statement to be executed instead of false. When the condition-clause is false, control is transferred
to the statement following the WHILE statement.

SRR e i T o e o
i 3 i »“ & a»‘ L Mm ‘\

L
F
e

5 «Ef‘“

iy s%ﬁ;i,tw,

v

s T

e s e Sl mw
i i
o e

ms ’ji;

: “ . M “
o 6 i , = i
iy i i e
" & ‘xs o, i i i Ja ‘w e ; s;;s.‘ i %‘
AP Q3 e
M?L 2 "?m ?" G ‘”m L
,.,,j& o «Q,?f S L e R e
- G : o s L
n; e L S mf

L ,u sl i L
m ’, Wwﬁs x«u%x s i i i
xx)‘, o n,-w =

- g (Axum(" Mot g
“1 e s »‘wm e Loddn
- ww, TIIIT .
‘%i
e Yy

it o

:
L “i;‘**,,;. N S e 1« e

i n, i

n,,, . el

i
Y Ak

‘g; s “s oy ; i i ‘f‘“w «% i im i “d*as i

o e i b i m]

4
o R
b
k‘v i
e b - L e
e e i 3 2 . : Ll e i
v o SRl e
e 2‘@;@ i w““ : L *“"W% e w o

! e = : g v

a o w“‘ex lm,ﬁi ; i Wé,%:?* x’ﬁk“’m»mﬁ“’nw

i
n“

i
i,
i i L gt i
“M ,x‘“ i ﬁ L mm. h‘
b il L o
"‘N« e g %w, e ,mm i w‘
o “?xx,,fizmwk e mm A
i “‘s
A W Uiy

L w,ﬂ i L :
ﬁ» e e el s il P n"ww
e b’;s&w"mg““f?xu o P e ,ﬂ fm n,‘,mnm
: i o |
ML? m M“”‘“{‘ I g W"‘wa.qf:mgi“ i x»‘f},“«n,;ﬁ" il 1 e ﬁ‘;ﬁﬁ! 44
i i i : o . x»(“"‘ i)
‘g‘q w“ i ﬁ.l‘m,gw Sl l*"m g“ﬂ"‘" "3’ i
Dokl
b doe w

Tk .
B S = e
< g S e - L

\&;;,‘f“w A ,““mm“ s »sm i § h il B S wm,
e ‘&\xm i oy B . i

i e i L e m,s.,mxx%’ i M,W« i
‘w hy i “ﬁ

g i X ‘sx B 5 xx “nq

‘Im Gl o e S i Dommils e o m i

h;’hh‘m “m s m i x& w%‘; N w??i u.‘ ,x,d ‘ii?“ws‘ : a‘nu%nxg,,‘g;w?; .
i iy

e W‘ 2 ’! b e il
de s R e

where

condition-clause
determines whether or not to execute the loop-statement. See paragraph 4-18 for the form of a
condition-clause. :

loop-statement
is the statement which is executed each pass through the loop while the condition-clause is true. The
loop-statement may be either a simple or compound statement including another WHILE statement.

The condition-clause is always tested before executing the loop-statement. Thus, if the condition-clause
is false on the first pass, the loop-statement will not be executed at all. The condition-clause consists of
logical-expressions and hardware branch words as described in paragraph 4-18. However, the follow-
ing branch words have different meanings when used in a WHILE statement:

IABZ Increment TOS. Execute loop-statement if TOS is non-zero.
DABZ Decrement TOS. Execute loop-statement if TOS is non-zero.
IXBZ Increment the index register. Execute loop-statement if the index-register is non-zero.
DXBZ Decrement the index register. Execute loop-statement if the index-register is non-zero.

5-5. FOR STATEMENT

The FOR statement is used to repeatedly execute a statement, changing an integer test-variable by a
specified amount each time, until the test variable exceeds a specified limit. The FOR statement uses
hardware loop control instructions which require special stack markers so you should be very careful
when performing your own stack manipulation within a FOR statement.

where

test-variable

is the variable which is altered by the step-value each pass through the loop and is tested for exceeding
the ending-value. The test-variable is an integer simple-variable.

starting-value
is the value assigned to the test-variable before the first pass through the loop. The starting-value is an
INTEGER, LOGICAL, or BYTE expression.

step-value
is the amount by which the test-variable is changed each time the loop is executed. The step-value is an
INTEGER expression. If omitted, a step-value of 1 is used.

ending-value
is the value against which the test-variable is tested each pass through the loop to determine whether
or not to execute the loop-statement again. The ending-value is an integer expression.

loop-statement
is the statement which is executed each pass through the loop. The loop-statement may be either a
simple or compound statement including another FOR statement.

The starting-value, step-value, and ending-value are calculated once upon entry into the FOR state-
ment. The starting-value is stored into the test-variable and tested before the loop-statement is first
executed. After each execution of the loop-statement, the variable is changed by the step-value and
compared with the ending-value. If the step-value is positive and the test-variable is less than or equal
to the ending-value, the loop-statement is executed again. If the test-variable is greater than the
ending-value, control is transferred to the statement after the FOR statement. For negative step-
values, the loop is executed again if the test-variable is greater than or equal to the ending-value. After
the FOR statement is executed, the test-variable contains the value which exceeds the ending-value.

5-6

Thus, the statement:
FOR J:=1 UNTIL 10 DO ...;

executes the loop-statement 10 times and J has a value of 11 when the loop is completed.

You can use an asterisk (*) after FOR to specify that the loop-statement is to be executed once without
testing the test-variable against the ending-value. This guarantees that the loop-statement is executed
at least once even if the starting-value is past the ending-value.

CAUTIONS in the Use of FOR Statements

If the test-variable is equivalenced to the index register, the TBX and MTBX instructions are used for
loop-control; otherwise, the TBA and MTBA instructions are used. Since all of these instructions use
values placed in the stack, if you alter the stack during the execution of the loop-statement, unpredict-
able results may occur. Additionally, if you exit a FOR statement, for example, with a GO TO or
RETURN, from within the loop-statement, the test-variable address, the step-value, and the ending-
value are left on the stack. If the index register is used as the test-variable, any operation within the
loop-statement which changes the index register, such as array referencing, can destroy the loop
control.

Therefore, it would be prudent for the SPL/3000 programmer to observe the following rules.

¢ Do not use the stack explicitly within the loop statement without restoring any changes made
because this makes it impossible for the compiler to keep track of the control values in the stack.
(Do not refer to TOS, S-relative variables, or stacked parameters; these are further described in
Section VII.)

¢ Enter FOR statements only from the beginning. Never branch into the loop statement.

¢ Exit FOR statements only at the end, except for PCALs.

¢ Do not modify the index register in any way (without also restoring it) within the loop statement ifa
variable equivalenced to the index register is being used as the loop control variable. (The compare
range construct is a little-known implicit use of the index register: A <= B <= C. Use of this
construct or subscripted variables within the loop statement will cause unpredictable results if the
loop variable is also the index register.) Executing a CASE statement embedded in a FOR loop will
modify the index register.

Table 5-1. Comparison of DO, WHILE, and FOR Statements

COMPARISON OF DO, WHILE, AND FOR STATEMENTS
DO STATEMENT

The condition-clause is evaluated and tested after the loop-statement is executed.
The loop-statement is repeated if the condition-clause is false.
The loop-statement is always executed at least once.

WHILE STATEMENT
The condition-clause is evaluated and tested before the loop-statement is executed.
The loop-statement is executed if the condition-clause is true.
The loop-statement is not always executed at least once.

FOR STATEMENT
The test-variable is checked before the loop-statement is executed.
The loop-statement is executed if the test-variable is less than or equal to the ending-value
(for positive step-values) or greater than or equal to the ending-value (for negative step-
values).
The loop-statement is always executed at least once if an asterisk is specified after the
reserved word FOR.

5-7

5-6. IF STATEMENT

The IF statement is used either to execute one of two alternative statements or to execute or skip a
single statement based on whether a condition-clause is true or false.

where

condition-clause
determines whether or not to execute the true-branch. The form of a condition-clause is described in
paragraph 4-18.

true-branch
is the statement which is executed if the condition-clause is true. The true-branch may be either a
simple or a compound statement including another IF statement.

false-branch
is the statement which is executed if the condition-clause is false. The false-branch may be either a
simple or compound statement including another IF statement.

There are two forms of the IF statement: single-branch and double-branch. The single-branch IF
statement is used when the two alternatives are to execute a statement or not to execute a statement.
If the condition-clause is true, the statement is executed and control proceeds to the statement after
the IF statement, unless the true-branch has tranferred to another statement with a statement such as
a GO TO or RETURN. If the condition-clause is false, the true-branch statement is not executed and
control is transferred to the statement after the IF statement. For example,

IF A<B THEN NX:= A+ B;
IF NOT (FINAL LOR LAST) THEN

BEGIN
TEST'DONE:=FALSE;
GO TO AGAIN

END;

The double-branch IF statement is used to select one of two alternative statements. If the condition-
clause is true, the true-branch statement is executed. If the condition-clause is false, control is

5-8

transferred to the false-branch statement. When the selected statement has been executed, control is
transferred to the statement after the IF statement except when a transfer has been executed from the

selected statement with, for example, a GO TO or RETURN statement. Some sample double-branch IF
statements are shown below:

IF A<B THEN XA:=XA+A
ELSE XA:=XA+B;
IF TESTVAR THEN Y:=Y+1
ELSE IF EXTRATEST THEN Y:=Y-1;
IF TEST THEN A:= A+ B ELSE A:=A-B:

Note that you cannot use a semicolon between the true-branch and the reserved word ELSE.

IF statements can be indefinitely nested. The innermost THEN is paired with the closest following
ELSE and pairing proceeds outward. For example,

IF condition-clause
THEN
IF condition-clause
THEN
IF condition-clause
{ THEN true-branch
ELSE false-branch
ELSE false-branch;

In the above example, the outermost IF statement is a one-branch IF statement.

As noted in paragraph 4-18, logical expressions and/or branch words can be combined using AND and
OR to form a condition-clause. These connectors should not be confused with the logical connectors
LAND and LOR which are used within logical expressions. If two items are combined with OR, the
result is true if either item is true or if both items are true. If two items are combined with AND, the
result is true only if both items are true. AND has higher precedence than OR, but you can use
parentheses around OR’ed expressions to override this precedence. Parentheses cannot be used around
items combined with AND.

5-7. CASE STATEMENT

The CASE statement is used to select one of a set of statements for execution by using an index value
into a compound statement. The statements of the compound statement are assigned index values
consecutively starting with 0 and incrementing by 1. After the selected statement has been executed,
control is transferred to the statement after the CASE statement unless a transfer is executed in the
selected statement such as a GO TO or RETURN statement.

where

index
determines which statement to execute. The index is an INTEGER, LOGICAL, or BYTE expression.

statement

is any simple or compound executable statement including another CASE statement. Null statements
are allowed.

Bounds checking on the index value is normally performed to insure that the index is between 0 and
n— 1 inclusive (where n is the number of statements in the body of the CASE statement). However, if
you do not want bounds checking to be performed, you can specify an * before the index. If the asterisk
option is specified, an invalid index will cause unpredictable results.

To transfer control immediately to the next statement, use a null statement in the case body. For
example,
CASE J OF
BEGIN
A:=100;
; <<NULL statement; NO ACTION, BUT HOLDS PLACE>>
C:=200
END; .
If J equals 0, statement A:=100 will be executed.
If J equals 1, control is transferred to the statement after the CASE statement.
If J equals 2, the statement C:=200 is executed.
If J =3, then the next statement following the CASE statement is executed.

The CASE statement uses the index register to store the index value.

5-10

PROCEDURE CALL STATEMENT

list of actual parameters to it. When a procedure is completed, control normally returns to the

The procedure call statement is used to transfer control to a previously declared procedure and pass a
statement following the call

5-8.

Labels as

ing

turn (see “Pass

1S re

however, the procedure can override thi

2

PV
i
i

=

Parameters”, paragraph 5-11).

et
ﬁ.m_w - ,m

o «swmmﬁ .
;%ww ;w@zwm%mw

BEooad

L

miu

Mi@

.J,ms%s - xwﬁm

. " z%ﬂwn% T
1o
2Eaan .uvmssu%;.“s ,‘Wnnmu
sunuwwmn&mmxﬁm B s
o it - .
4 i o
: . -
S
Wﬂk;ﬁw;;mﬁimg

o
m«

|

mwss

Vnﬂﬂn‘ ,

i
f,:ﬁ»w

L = -
o sn,mwww - . . mmwmﬁwﬁmw -

swﬁuu;
> xmmmgwnsxsay
e
Nummunﬂwwﬂnni
o -

i
el

5

= ,
a mmmmmwm

e L
m%m suuwmmw

L al 3 ﬂww o

identifies the procedure to which control is transferred. The procedure-name is an identifier which has

procedure-name

where

int or in an intrinsic-

_po

-name or entry

dure-declaration as a procedure

in a proce

been declared either

1011.

-parameter

declarat
actual

f the following

1S one o

dex)]
-expression

identifier| (in
thmet
logica

14

ic
expression

arti

l-

asstgnmen

statement

. "

dentifier

14

array-

imple-variables,

8

tems can be passed

i
and labels.

ing

reference parameter. The follow

by
names,

ifies a call-

dent
names, poin

i

ts,

in

names, entry-po

cedure-

pro

ter-

t statement of type

1S an expression or an assignmen

INTEGER, LOGICAL, or BYTE and can only be specified for array-names and pointer-names. If an

denotes an array or pointer element. The index
index is not specified, the zero element is used.

index

o
-
=
[«
£
-
St
Q
w2
[}
o
]
~
&
w0
=
]
+~
- -
[«)]
w0
]
<
D
£
&
0w
2 E
9 &
g o
X =
S H
%
SR
-
0 5
5 &
3 o
% 2
< »
Y
L 4
o i
2 ®
v ©
K
],
53
=N O
g2
nloa
S P
S
S 2
L3
="
S o
S
&2
-
.MU
S|
S5
..me
3 8

511

paragraphs 4-11 through 4-17 and 4-20.

The * is used to indicate that you have already put the parameter onto the stack. See paragraph 7-4 for
a discussion of the correspondence between the actual-parameters in a procedure-call and the formal-
parameters in a procedure-declaration.

If a function procedure is called using a procedure call statement instead of a function-designator in an
expression, the return value is deleted from the stack upon returning to the calling routine unless the
procedure overrides the normal return.

Two types of parameter passing are allowed in SPL: by reference and by value. A call-by-reference
parameter places an address onto the stack. A data item (simple-variable, array-element, or pointer-
element) which is passed by reference can have its value changed in the calling environment by
changing its value in the procedure. A call-by-value parameter is passed by evaluating the parameter
at the time of the procedure call and placing this value onto the stack. If a parameter is passed by
value, changes to the parameter value in the procedure will not alter the value of the parameter in the
calling environment.

When a procedure call statement is executed, the actual parameters are loaded onto the stack and a
PCAL instruction is executed. The PCAL instruction places a four-word stack marker onto the stack,
changes the Q-register to point to the top of this stack marker, and transfers control to the entry-point
of the procedure. The stack marker contains the following information:

Q-3 Index Register
Q-2 Return address
Q-1 Status Register
Q-0 delta Q

The return address is P+ 1- PB where P is the value of the P register when the PCAL instruction is
executed and PB is the base register for the code segment. The delta Q is the number of words between
the new value of Q and the previous value of Q.

Because of the stack architecture, recursive procedures (that is, procedures which call themselves) are
allowed.

5-9. STACKING PARAMETERS

Stacked parameters may be either call-by-reference or call-by-value. For call-by-reference parameters,
you must put the address of the actual-parameter onto the stack. For example,

TOS:=@A;

For call-by-value parameters, you must put the value of the actual-parameter onto the stack. For
example,

TOS:=1+2;
If any parameter is stacked, all parameters to its left must also be stacked. For example,

P¢**,B,C);
5-12

Labels cannot be stacked. Before stacking parameters for a call to a function procedure, you must push
a one-,two-,or four-word zero, depending on the data type of the function, onto the stack for the return
value. This zero is generated automatically if no parameters are stacked. For example, assume P is a
REAL procedure which has two call-by-reference parameters. The following steps are needed if you
want to stack the parameters:

TOS:=0D;
TOS:=@A,;
TOS:=@B;

5-10. MISSING PARAMETERS IN PROCEDURE CALLS

If the procedure is declared with OPTION VARIABLE, parameters can be omitted from the actual-
parameter list by leaving a comma to hold their place or by using a right parenthesis to terminate the
list if you want to omit the parameters at the end of the formal-parameter list. For example, consider
the procedure declaration:

PROCEDURE P(A,B,C,D,E,F);..;OPTION VARIABLE;...

To pass only the first parameter, use a procedure call such as
P(R);

To pass the first and last parameters, use a procedure call such as
P(R1,,,,,R2);

If you want to omit all parameters, you can use either of the following:

P; or P();

The called procedure is responsible for checking the existence of actual parameters. See paragraph 7-9
for a discussion of how to perform this checking.

5-11. PASSING LABELS AS PARAMETERS

Labels may be passed to procedures as call-by-reference parameters to allow control to transfer to a
place other than the normal return address upon completion. Unlike other call-by-reference parame-
ters, however, a label is passed as a three-word label descriptor. If a label is passed to several levels of
procedure calls (such as A calls B which calls C), the label descriptor allows you to transfer to the label
without executing an EXIT instruction for each procedure through which the label was passed; only
the first procedure which received the label parameter is exited. This technique can be very useful for
error processing.

The label descriptor contains the following information:

EXIT Instruction

Label address

Q

5-13

The first word of the label descriptor is an exit instruction to exit the first procedure to which the label
is passed. The second word is the address of the label. The third word is the value of the Q register upon
entry to the first procedure to which the label is passed.

When a transfer to a label which was passed as a parameter is executed, the following steps are
performed:

1. The label descriptor is put on the top of the stack.

2. The Q register is reset to the value in TOS (which is the value it had upon entry to the first
procedure).

3. The label address is stored in Q—2 (the return address location for the first procedure).

4. The exit instruction on the top of the stack is executed to effectively exit the first procedure
and transfer control to the label.

The following situation is illustrated in figure 5-1:
a. The main body calls procedure A and passes the label L as a parameter.

b. Procedure A calls procedure B and passes an integer variable I by-value and the label L as
parameters.

c. While in procedure B, a transfer to L is executed —
1. The label descriptor is loaded onto the stack.
2. The Q register is reset to Q (A).

3. The address of L is stored into Q— 2 overriding the normal return address from A back to the
main body.

4. The EXIT instruction in S—0 is executed to:
1. Reset Q to the main body value.
2. Delete the stack marker for A and the label descriptor passed to A.
3. Tranfer control to L.

If the first procedure is a function procedure, the space for the return value is left on the stack should
you not perform a normal return, but transfer to a place other than where the call was made.

5-12. PASSING PROCEDURES AS PARAMETERS

Procedures may be passed to other procedures as call-by-reference parameters. The Load Label (LLBL)
instruction is used to load the external address of the procedure onto the stack. When calling a
procedure which was passed as a parameter, the parameters are assumed to be call-by-reference. To
pass call-by-value parameters to such a procedure, you must stack them before calling the procedure
and use the * in the procedure call. A procedure which has been declared with OPTION VARIABLE
requires a special technique for being passed to another procedure and then called. Such procedures

5-14

AlL);

EXIT 3

ADDRESS OF L

QS —»

Qa

X

RETURN ADDRESS

STATUS

AaQ

LABEL
DESCRIPTOR
3\
STACK
MARKER
/

Qs —»

B{I,L);

EXIT3

ADDRESS OF L

Qa

X

RETURN ADDRESS

STATUS

AQ

EXIT3

ADDRESS OF L

Qp

X

RETURN ADDRESS

STATUS

Aa

STACK
MARKER

LABEL
DESCRIPTOR

7

AN

> PARAMETERS

AN

STACK
MARKER

Figure 5-1. Passing a Label as a Parameter

5-15

1.

EXIT 3

ADDRESS OF L

Qp

X

RETURN ADDRESS

STATUS

AQ

EXIT 3

ADDRESS OF L

Qp

X

RETURN ADDRESS

STATUS

AQ

EXIT3

ADDRESS OF L

Qp

2
EXIT3
LABEL
DESCRIPTOR ADDRESS OF L
Qa
X
STACK RETURN ADDRESS
MARKER
STATUS
Qp a—»| 40
>>PARAMETERS
STACK
MARKER
Qg
EXIT 3
S —p»] ADDRESSOF L

ADDRESS OF L

P

LABEL
>DESCRIPTOR

STACK
MARKER

3
EXIT3
>=LABEL
DESCRIPTOR
Qp
X
sTack @2, ADDRESSOF L
MARKER
STATUS
AQ
Qu o) /
/
//
i
;
;
/‘
/
/
/
‘l
/
/ s EXIT3

Figure 5-1. Passing a Label as a Parameter (Continued)

5-16

require a bit mask in Q- 4, and Q-5 if there are more than 16 formal parameters. If you call such a
procedure you must generate your own bit mask. For example, consider the declarations:

PROCEDURE P(A,B);...;OPTION VARIABLE;...
PROCEDURE P1(F); PROCEDURE F;

If P is passed as an actual parameter to P1, such as:
P1(P);
Then, a call to P within P1 would look like
F(A,B,3);
where 3 is the bit mask indicating that both parameters are present. Since the last parameter is a

constant instead of an address reference, a warning message is issued. An alternative method is to
stack all parameters and the bit mask:

TOS:=@A;
TOS:=@B,;
TOS:=3;

For further discussion of OPTION VARIABLE procedures, see paragraph 7-10.

5-17

5-13. SUBROUTINE CALL STATEMENT

The subroutine call statement is used to invoke a previously declared subroutine and pass a list of
actual parameters to it. When a subroutine is completed, control normally returns to the state-
ment following the call; however, the subroutine can override this return. A global subroutine can

branch to a label in the main body and a local subroutine can branch to a label in the procedure
body.

where

subroutine-name

identifies the subroutine to which control is transferred. The subroutine-name is an identifier which
has previously been declared in a subroutine declaration.

actual-parameter
is one of the following:

identifier| (index)]
arithmetic-expression
logical-expression

assignment-statement
*

identifier
identifies a call-by-reference parameter. The following items can be passed: simple-variables, array-
names, pointer-names, procedure-names, and entry-points.

index

denotes an array or pointer element. The index is an expression or assignment statement of type
INTEGER, LOGICAL, or BYTE and can only be specified for array-names and pointer-names. If an
index is not specified, the zero element is used.

arithmetic-expression, logical-expression, and assignment-statement

are evaluated to pass a value as a call-by-value parameter. The forms for these items are described in
paragraphs 4-11 through 4-17 and 4-20.

The * is used to indicate that you have already put the parameter onto the stack. See paragraph 7-4 for
a discussion of the correspondence between the actual parameters in a subroutine call and the formal
parameters in a subroutine declaration.

5-18

Note that a label cannot be passed as a parameter to a subroutine nor can parameters be omitted
(OPTION VARIABLE cannot be specified for a subroutine). Alternate entry points are not allowed in
subroutines.

If a function subroutine is called using a subroutine call statement instead of a function-designator in

an expression, the return value is deleted from the stack upon returning to the calling routine unless
the subroutine overrides the normal return.

When a subroutine call statement is executed, the actual parameters are loaded onto the stack and an
SCAL instruction is executed. (SCAL may be replaced with an LRA and a BR.) The SCAL instruction
puts the return address onto the stack and transfers control to the subroutine entry-point. The
Q-register is not changed — all parameters are addressed using S-negative addressing. Recursive
subroutines (that is, subroutines which call themselves) are allowed.

The discussion in paragraphs 5-9 and 5-12 conncerning stacking parameters and passing procedures
as parameters applies to subroutines as well as procedures except that labels and subroutines cannot
be passed as parameters to a subroutine.

5-14. RETURN STATEMENT

The RETURN statement is used to exit a procedure or subroutine at some place other than the last
END of the body. Additionally, the RETURN statement can be used to leave some or all of the
parameters on the stack after returning to the point of call.

where

count
indicates how many words to delete from the stack. The count is an unsigned decimal, based,

composite, or equated integer constant.

A RETURN statement within a procedure generates an EXIT instruction, whereas a RETURN
statement within a subroutine generates an SXIT instruction. Multiple RETURN statements within a
single procedure or subroutine are allowed. You can also use a RETURN statement in the main-body
of a program to terminate the program.

If a count is not specified, all parameters are deleted from the stack. If the count equals n, then only the
top n words are deleted. If the count equals 0, all parameters are left on the stack. Note that count is a
word count and not a parameter count. You can specify a count greater than the number of words
passed as parameters; however, you should be very careful that you only delete values you want to
delete.

The calling program must know how many parameters will be left on the stack upon returning
because it must take care of them (examine, save, or delete them). INTEGER, LOGICAL, and BYTE
values use one word; DOUBLE and REAL values use two words; labels use three words; and LONG
values use four words. Call-by-reference parameters (except labels) use one word.

5-20

SECTION

Vi

ag
ST

.
S e

e

on

tructi

mns

.
Siioven e

-

op to generate a constant. The

-1

ASSEMBLE statement can be labeled, and control can be trans-
from outside the ASSEMBLE statement..Additionally, identifiers

iy e]
5ot

o

s taty o
Ego

.
L

i
o
B
- .

i
Ll
Yyt

s

identifier
6-1

in figure 6

is an SPL

MACHINE LEVEL CONSTRUCTS

ASSEMBLE STATEMENT

The ASSEMBLE statement is used to generate code by specifying the mnemonics for the hardware

6-1.

ions within an
truct

. Instruct

ions
ferred to'these labele

truct

mns

ons

d 1ns

e

which are outside the ASSEMBLE statement can be referenced within the statement, but any indirect

references or indexing must be explicitly specified.

Sraaan i

iy

i
W
i

e

“"E‘,“i‘i
Y
x

S
i

E

S

Seg sk had an

e

.
i)

ey

il

o
Pl

)

S e e
il

et
sooE

@nﬁ%&mmmmw

i
G
i

i

o

i

9
e

The label

truction.

ns

fies the i

denti

i

on
tes a mach

tructi

d
conforms to one of the ten formats shown

ins

to be executed or a pseudo

101

tructi

ins

me

1ca

n

Indirection

Index Register or Indexing

A statement or instruction label within addressing range.

A data item identifier within addressing range.

An unsigned integer less than or equal to the integer specified. For
example usi255 means an unsigned integer between 0 and 255

1ve.

lus

Inc

The following conventions are used in the instruction formats

label ¢

variable 1

ust

Format 1

la

1b

1c

1d

BCC
group

le

LOAD
LDX
LRA
CMPM
ADDM
SUBM
MPYM

LDB
LDD
STOR
STB
STD
INCM
DECM

BR

BR

BL
BE
BLE
BG
BNE
BGE

TBA
MTBA
TBX
MTBX

|

|
|

label id
variable id
DB + usi255
P + usi2b5
P - usi255
Q + usil27
Q - usi63

S - usi63

variable id
DB + usi255
Q + usil27
Q — usi63

S - usi63

label id
P + usi255
P - usi255

DB + usi255
Q + usil27
Q - usi63

S ~ usi63

label id
P+ usi3l
P - usi3l

label id
P + usi255
P — usi255

|

|
|

LI [LX]

LI 0X]

LI LX)

I [X]

(1]

Figure 6-1. Instruction Formats

6-2

where

variable id is a simple variable, pointer, or array identifier, (indirection is not supplied
automatically).

usi is an unsigned integer less than or equal to the number following.

label id is a label which is used to label a statement within the range of the instruction.
For example,

ASSEMBLE(STB S -1, I, X; DECM VAR);

Format 2

stackop
or

stack op, stack op
In the first case the compiler fills in the second half of the instruction word with a NOP.

The legal stackops are as follows:

NOP DNEG XCH FLT NOT
DELB DXCH INCA FCMP OR
DDEL CMP DECA FADD XOR
XROX ADD XAX FSUB AND
INCX SUB ADAX FMPY FIXR
DECX MPY ADXA FDIV FIXT
ZERO DIV DEL FNEG INCB
DZRO NEG ZROB CAB DECB
DCMP TEST LDXB LCMP XBX
DADD STBX STAX LADD ADBX
DSUB DTST LDXA LSUB ADXB
MPYL DFLT DUP LMPY

DIVL BTST DDUP LDIV

For example,

ASSEMBLE(DDUP, DELB; STAX);

Format 3

3a [IABZ
IXBZ
DXBZ
BCY
BNCY label
CPRB P + usi3l [,I]
DABZ * + ysi3l

BOV
BNOV
BRO
BRE

Figure 6-1. Instruction Formats (Continued)

6-3

In these branch instructions, the address can be specified as a label or a P relative address (P+
or *# are the same thing). If the label location is not within 31 locations of P (P * 31), the

compiler tags this as an error; indirection is not supplied automatically within an ASSEMBLE
statement.

3b | ASL
ASR
LSL
LSR
CSL
CSR

TBC

SCAN
TASL
TASR
TNSL
DASL
DASR
DLSL
DLSR
DCSL
DCSR

TRBC
TSBC

TCBC
QASL
QASR

usi63 [,X]

usi63 is a shift count or number of bits less than or equal to 63. For example,

Format 4

4a

4b{

ASSEMBLE(LSL 1; BRE QUIT);

LDI
LDXI
CMPI
ADDI
SUBI
MPYI
DIVI
PSHR T
LDNI
LDXN
CMPN
SETRT

EXF
DPF

usi255 ¥ = a privileged instruction for
some registers

} usilb : usilb

For example,

ASSEMBLE (LDI 255; ADDI 5; EXF 7:9);

Figure 6-1. Instruction Formats (Continued)

6-4

Format 5

RSW

IXITH

PCN+

For example,

LLSH#
PLDA%
PSTA+
LSEA¥
SSEA¥
LDEA%
SDEA+

LOCK+

UNLK+

ASSEMBLE (RSW; PLDA; . .. LLSH;

Format 6

PAUS
SED
XEQ
SI0
RIO
WIO
TIO
CIO
CMD
SIN
HALT
LST
SST

XCHD
SMSK
RMSK
{ PSDB
DISP
PSEB
SCLK
RCLK

For example,

J

usils

miniop-5

ASSEMBLE (XEQ 4);

+ = a privileged instruction

...PSTA);

All of these instructions except XEQ and RMSK are privileged.

6-5

Figure 6-1. Instruction Formats (Continued)

Format 7

For example,

ASSEMBLE (PCAL READ:;....SCAL 0;...ORI %377);

Format 8

8a

If item two is empty, a DB relative move is assumed.

PCAL
SCAL
EXIT
SXIT
ADXI
SBXI
LLBL
LDPP
LDPN
ADDS
SUBS.
ORI
XORI
ANDI

usi255

PCAL procedure identifier
SCAL (user must load label onto stack)
LLBL procedure identifier

MOVE
MVB
CMPB

-

(PB] ’

-

0
1
2
3

If item three is empty, the stack decrement is 3.

8b

MVBW

A

N ,0
AN 1
AS 2
ANS

If item three is empty, the stack decrement is 2.

*8c

MVBLT
MVLBY
SCwW
SCuU

f

©

w o =
{—

TPrivileged instruction.

Figure 6-1. Instruction Formats {Continued)

6-6

If item two is missing, the stack decrement is 3. For example,

ASSEMBLE (SCW, 1);
ASSEMBLE (MVBW AN, 0);
ASSEMBLE (CMPB PB, 1);

*8d [MABS¥ 0
MTDS+ 1
MDS+ 2
MFDS+ 3
4
5 for MABS and
B MDS

*If there is no stack-decrement, the default is equal to the number of parameters.

Format 9

CON constant list

This format is actually a psuedo-mnemonic for constant generation; it is not a hardware
instruction.

CON stores a series of constants in the code starting at the current location. In addition to all
numerical and string constants, P relative address constants can be created by listing label
identifiers (this is used to create addresses for indirect references). The CON instruction itself
can be labeled so that other instructions can reference the constants symbolically.

ASSEMBLE(
BRP+1,I;
CON LABELNAME);

ASSEMBLE (TAB: CON “ABCDEFGH”;
LDBTAB, X;.........);

Format 10

10a DMUL
DDIV
EADD
ESUB
EMPY
EDIV
ENEG
ECMP
DMPY

10b | CVAD 0
CVBD 1

Figure 6-1. Instruction Formats (Continued)

6-7

If item 2 is 0, 2 words are deleted from the stack.
If item 2 is 1 or empty, 4 words are deleted from the stack.

If item 2 is 0, 2 words are deleted from the stack.
If item 2 is 1 or empty, 3 words are deleted from the stack.

10d (ADDD
SUBD
MPYD
CMPD
SLD
NSLD
SRD

N =O

If item 2 is 0, no words are deleted from the stack.
If item 2 is 1, 2 words are deleted from the stack.
If item 2 is 2 or empty, 4 words are deleted from the stack.

10e
[0

. 1
CVDA | aBs | o
NABS |'| 1

If O is specified, 1 word is deleted from the stack.

If 1 is specified, 3 words are deleted from the stack.

If neither 0 nor 1 is specified, 3 words are deleted from the stack.
If ABS'is specified, the target sign will be negative if the source

is negative; otherwise, the target will be unsigned.

If NABS is specified, the target will be unsigned.

If neither ABS nor NABS is specified, the target sign will be the
same as the source.

Figure 6-1. Instruction Formats (Continued)

A list of the mnemonics with their meanings is shown in table 6-1. For a complete description of the
instructions, refer to the Machine Instruction Set Reference Manual.

6-8

Table 6-1. Machine Instruction Mnemonics

BCC

MNEMONIC

ADAX
ADBX
ADD
ADDD
ADDI
ADDM

ADDS
ADXA
ADXB
ADXI
AND
ANDI
ASL
ASR
BCC
BE
BG
BGE
BL
BLE
BNE
BCY
BNCY
BNOV
BOV
BR
BRE
BRO
BTST
CAB
ClO
CMD
CMP
CMPB
CMPD
CMP
CMPM
CMPN
CPRB
CsL
CSR
CVAD
CvBD
CVDA
CvDB
DABZ
DADD
DASL
DASR
DCMP
DCSL
DCSR

ALPHABETIC LISTING OF INSTRUCTIONS

FUNCTION

Add A to X

Add B to X

Add

Decimal add

Add immediate

Add memory

Add to S

Add X to A

Add X to B

Add immediate to X

And, logical

Logical AND immediate
Arithmetic shift left

Arithmetic shift right

Branch on condition code
Branch on equals

Branch on greater than
Branch on greater than or equal
Branch on less than

Branch on less than or equal
Branch on not equal

Branch on carry

Branch on no carry

Branch on no overflow
Branch on overflow

Branch

Branch on TOS even

Branch on TOS odd

Test byte on TOS

Rotate ABC

Control /O

Command

Compare

Compare bytes

Compare decimal

Compare immediate
Compare memory

Compare negative immediate
Compare range and branch
Circular shift left

Circular shift right

Convert ASCII to packed decimal
Convert binary to packed decimal
Convert packed decimal to ASCII
Convert packed decimal to binary
Decrement A, branch if zero
Double add

Double arithmetic shift left
Double arithmetic shift right
Double compare

Double circular shift left
Double circular shift right

FORMAT

2
2
2

10d
4a
1a
7
2
2
4a
2
7
3b
3b
1d
3a

3a
3a
3a
1C
3a

f\)l\)O‘)Oﬁl\)l\)(K))

10d
4a
1a
4a
3a
3b
3b
10b
10b
10e
10c
3a

3b
3b

3b
3b

6-9

Table 6-1. Machine Instruction Mnemonics (Continued)

MNEMONIC

DDEL
DDIV
DDUP
DECA
DECB
DECM
DECX
DEL
DELB
DFLT
DISP
DIV
DIVI
DIVL
DLSL
DLSR
DMPY
DMUL
DNEG
DPF
DSUB
DTST
DUMP
DuUP
DXBZ
DXCH
DZRO
EADD
ECMP
EDIV
EMPY
ENEG
ESUB
EXF
EXIT
FADD
FCMP
FDIV
FIXR
FIXT
FLT
FMPY
FNEG
FSUB
HALT
HIOP
|ABZ
INCA
INCB
INCM
INCX
INIT
IXBZ
IXIT

ALPHABETIC LISTING OF INSTRUCTIONS
FUNCTION

Double delete

Double divide

Double duplicate

Decrement A

Decrement B

Decrement memory

Decrement X

Delete A

Delete B

Double float

Dispatch

Divide

Divide immediate

Divide long

Double logical shift left

Double fogical shift right

Double logical multiply

Dcuble multiply

Double negate

Deposit field

Double subtract

Test double word on TOS

Load soft dump program

Duplicate A

Decrement X, branch if zero

Double exchange

Double push zero
Extended-precision floating point add
Extended-precision fioating point compare
Extended-precision floating point divide
Extended-precision floating point multiply
Extended-precision floating point negate
Extended-precision floating point subtract
Extract field

Procedure and interrupt exit

Floating add

Floating compare

Floating divide

Fix and round

Fix and truncate

Float

Floating multiply

Floating negate

Floating subtract

Halt

Halt 1/O program

Increment A, branch if zero
Increment A

Increment B

Increment memory

Increment index register

Initialize 1/0 channel

Increment X, branch if zero

Interrupt exit

FORMAT

—_
N NDO N
o8]

(o2

T\JQ.I?I\)O‘.OI\)T\)N[\J—‘I\)

w W
oo

10a
10a

10a
10a
10a
10a
10a
10a

N
~N T

OO NN MNODNMNDNDNDN

6-10

Table 6-1. Machine Instruction Mnemonics (Continued)

ALPHABETIC LISTING OF INSTRUCTIONS

MNEMONIC FUNCTION FORMAT
LADD Logical add 2
LCMP Logical compare 2
LDB Load byte 1b
LDD Load double 1b
LDEA Load double word from extended address 5
LDi Load immediate 4a
LDV Logical divide 2
LDNI Load negative immediate 4a
LDPN Load double from program, negative 7
LDPP Load double from program, positive 7
LDX Load Index 1a
LDXA Load X onto stack 2
LDXB Load X into B 2
LDXI Load X immediate 4a
LDXN Load X negative immediate 4a
LLBL Load Label 7
LLSH Linked list search 5
LMPY Logical multiply 2
LOAD Load 1a
LOCK Lock resource 5
LRA Load relative address 1a
LSEA Load single word from extended address 5
LSL Logical shift left 3b
LSR Logical shift right 3b
LST Load from system table 6
LSUB Logical subtract 2
MABS Move using absolute address 8
MCS Memory controller read status
MDS Move using data segment 8
MFDS Move from data segment 8
MOVE Move words 8a
MPY Multiply ’ 2
MPYD Decimal Multiply 10d
MPYI Multiply immediate 4a
MPYL Multiply long 2
MPYM Multiply memory 1a
MTBA Modify, test, branch, A 1e
MTBX Modify, test, branch, X 1e
MTDS Move to data segment 8
MVB Move bytes 8a
MVBL Move from DB+ to DL+ 8c
MVBW Move bytes while 8b
MVLB Move from DL+ to DB+ 8c
NEG Negate 2
NOP No operation 2
NOT One’s complement ‘ 2
NSLD Normalizing shift left decimal 10d
OR OR, logical 2
ORI Logical OR immediate 7
PAUS Pause 6
PCAL Procedure call 7
PCN Push CPU number 5
PLDA Privileged load from absolute address 5
PSDB Pseudo interrupt disable 6

6-11

Table 6-1. Machine Instruction Mnemonics (Continued)

MNEMONIC

PSEB
PSHR
PSTA
QASL
QASR
RCCR
RCLK
RIO
RIOA
RIOC
RMSK
RSW
SBXI
SCAL
SCAN
SCLK
SCLR
scu
scw
SDEA
SED
SEML
SETR
SIN
SINC
SI0
sioP
SIRF
SLD
SMSK
SRD
SSEA
SST
STAX
STB
STBX
STD
STOR
STRT
suB
SUBD
suBl
SUBM
SUBS
SXIT
TASL
TASR
TBA
TBC
TBX
TCBC
TEST
TIO
TNSL
TOFF
TON

ALPHABETIC LISTING OF INSTRUCTIONS

FUNCTION FORMAT

Pseudo interrupt enabie 6
Push registers 4a
Privileged store into absolute address 5
Quadruple arithmetic shift left 3b
Quadruple arithmetic shift right 3b
Read system clock

Read clock 6
Read 1/0 6

Read 1/0 adapter

Read 1/0 channel

Read mask

Read switch register

Subtract immediate from X

Subroutine call

Scan bits

Store elock

Set system clock limit

Scan until

Scan while

Store double word into extended address
Set enable/disable external interrupts
Semaphore load

Set registers 4a

DW~N~NOO
(o2

k¥

Set interrupt 6
Set system clock interrupt

Start /10 6
Start 1/O channel program

Set internal interrupt reference flag 6
Shift left decimal 10d
Set mask 6
Shift right decimal 10d
Store single word into extended address 5
Store in system table 6
Store A into X 2
Store byte ib
Store B into X 2
Store double 1b
Store 1a
Programmatic warm start

Subtract 2
Subtract decimal 10d
Subtract immediate 4a
Subtract memory 1a
Subtract from S 7
Subroutine exit 7
Triple arithmetic shift left 3b
Triple arithmetic shift right 3b
Test, branch, A 1e
Test bit and set condition code 3b
Test, branch, X te
Test and complement bit and set CC 3b
Test TOS 2
Test /1O 6
Triple normalizing shift left 3b

Hardware timer off
Hardware timer on

6-12

Table 6-1. Machine Instruction Mnemonics (Continued)

ALPHABETIC LISTING OF INSTRUCTIONS

MNEMONIC FUNCTION FORMAT
TRBC Test and reset bit, set condition code 3b
TSBC Test, set bit, set condition code 3b
TSBM Test and set bit in memory 3b
UNLK Unlock resource 5
WIO Write 1/O 6
WIOA Write I/O adapter
WIOC Write 1/0 channel
XAX Exchange A and X 2
XBX Exchange B and X 2
XCH Exchange A and B 2
XCHD Exchange DB 6
XEQ Execute 6
XOR Exclusive OR, logical 2
XORI Logical exclusive OR, immediate 7
ZERO Push zero 2
ZROB Zero B 2
ZROX Zero X 2

6-13

6-2. DELETE STATEMENT

The delete statement allows you to delete words from the stack without using the ASSEMBLE
statement.

The mnemonics have the same meanings as in the ASSEMBLE statement:

DEL Delete the top of stack (S—0) and decrement the S-register by 1.
DELB Delete the contents of S—1 by storing S— 0 into it and decrement the S-register by 1.
DDEL Delete the contents of S—0 and S—1 and decrement the S-register by 2.

See figure 6-2 for the effect of the delete statement on the stack.

BEFORE DEL AFTER DEL
S-2 ? S-1 7
S-1 6 S0 6
S0 5

BEFORE DELB AFTER DELB
S-2 7 S-1 7
s-1 6 S0 5
S0 5

BEFORE DDEL AFTER DDEL
S22 7 S0 7
s1 6
S0 5

Figure 8-2. Delete Statement
6-14

PUSH STATEMENT

10n.

6-3.
The PUSH statement puts the contents of any or all of the registers onto the stack using the PSHR
instruct

=

i

e

i

i

A

i

Wmm.

-

s

SuRESRE R
e
e

-

i -

s]

.

e

b
o
=
o
, e
.
.

.

-
= o
-

e
- =
.

s

T

T

-

A

.
S

=

T

.

2

s
-

o

i)
0

gy
o
s

i

bl
.

where

register

f the following hardware registers: S,Q,X,STATUS,Z,DL, DB, or SBANK

1S one o

If more than one register is specified, they are stacked in the order shown below (regardless of the

order in which they are listed in the PUSH statement)

VALUE STACKED

REGISTER

S— DB (relative S before PSHR instruction)

Q- DB (relative Q)
Index Register

STATUS

Status Register
Z— DB (relative Z)

DL—- DB (relative DL)

DL

DB (absolute address — 2 words)

Stack Bank

DB
SBANK

f you use the statement

i

Thus,

);

S,X,DL

H(STATU

PUS

ike

The stack would look 1

Ft
g | &
+2 w
N2 I~ B~
=14]) A
] [®
~ >
x 31 &
[} ~ 3]
< sl 3
Sl | =
qy 2
th w W

ired to push either DB or SBANK.

is requ

leged mode

ivi

Pr

6-15

6-4. SET STATEMENT

The SET statement is used to set the contents of any or all registers using values taken from the stack.
The SETR instruction is used to perform this operation:

where

register
is one of the following hardware registers: S,Q,X,STATUS,Z,DL,DB, or SBANK.

Privileged mode is required to set SBANK, DB, DL, Z, and parts of the Status register. If you are not in
privileged mode and you set the STATUS register, only the Traps Enabled bit, the Carry and Overflow
bits, and the Condition Code are set. The rest of the STATUS register is not altered.

Before using a SET statement, the appropriate values must be loaded onto the stack. If more than one
register is specified, they are taken from the stack in the following order (regardless of the order in
which they are listed in the SET statement):

REGISTER VALUE TAKEN FROM THE STACK
SBANK Stack Bank
DB DB (absolute address — 2 words)
DL DL- DB (relative DL)
Z Z— DB (relative Z)
STATUS Status Register
X Index Register
Q Q- DB (relative Q)
S S— DB (relative S)

Relative addresses in the stack are added to the absolute value of DB before setting the registers. The
values are deleted from the stack by the SETR instruction.

Note that the order in which the registers are set is the reverse of the order in which they are pushed.
This reversal is consistent with the last-in, first-out stack architecture of the HP 3000.

6-16

6-5. WITH STATEMENT

The WITH statement is intended specifically for privileged users running in split-stack mode (see the
final paragraph of section 8-1). It performs a syntactic check to ensure that only split-stack compatible
code is generated. Reliability is increased by limiting the code inside a WITH statement to certain
DB-relative offsets. The variables used inside the WITH block must have been declared inside a
corresponding DATASEG declaration, or be Q- or S-relative, unless a move is also included. The only
form of move allowed inside the WITH statement is the MOVEX between data segments (seeSection
4-21A), where the variables used may have been declared in any DATASEG declaration. Checking will
be performed as for OPTION SPLIT (see Section 7-13A).

The form of the WITH statement is:

WITH dataseg-name DO

BEGIN

END;
where

dataseg-name
is an SPL identifier.

The actual switching of data segments is left up to the SPL/3000 programmer.

6-17

Vil

PROCEDURES, INTRINSICS,

AND SUBROUTINES

SUBPROGRAM UNITS

7-1.

. Procedures
in a program.

nes

, and subrout

identical except for their location and how they are declared
Subroutines are less powerful than procedures and intrinsics and use different hardware instructions

intrinsics

procedures, i

There are three types of subprogram units in SPL

insics are

and intr

to call and exit. The declarations for procedures and intrinsics follow the global data declarations and

precede any global subroutine declarations as shown below.

m%m@_mmmm@m wmmm@m&mmmmw .

| Brees ﬁm%nwmmfsimm% ?

e m@mmm@m%%m»&mmammm]
- Mmumm_mn .

.- -
e
&@@@@@@@%ﬁ@ﬂ%mﬂ%m
Bl s e

e .

@nﬁn@bmn

e nm&m&m@mﬁmw e

MW@mmmmﬁ&m@E-mmmaﬂaﬁmﬂ

..
mm@m&@@mm mm@m@mmmm
mm.m&%mm@mmnﬁ ﬁmmmmﬂwwwﬂ

E@@n&aﬁgn@ﬁsﬁs@

. w_zm
- = =
cimaanas mmm@mmﬂmm
s
...

2o .

fi-aiiias

- o : mm

iwwmm WM%

. m .
e

1018 1n

Local subroutine declarations are within the procedure body following the other local declarat
the procedure declaration and preceding the executable statements of the procedure body.

L}

7-2. PROCEDURE DECLARATION

A procedure declaration defines an identifier as a procedure and specifies what attributes the proce-
dure will have:

Data type of result for function procedures.

Type and number of formal parameters.

Options (external body, variable number of parameters,etc.).
Local variables.

Statements of the procedure body.

Procedures are called by means of the identifier and a list of actual parameters. Procedure
declarations are not allowed within other procedures unless they are declared without a body (that
is, OPTION EXTERNAL).

where

type
indicates that the procedure is a function procedure which returns a value of the specified data type.
The type is INTEGER, LOGICAL, BYTE, DOUBLE, REAL, or LONG.

procedure-name
is an SPL identifier used to identify the procedure.

formal-parm
is an SPL identifier which is used as a local identifier to reference an actual prarameter.

value-part

indicates which formal parameters are to be passed by-value. All parameters which are not specified in
the value-part are passed by-reference. The value-part is of the form: VALUE formal-parm
[,....,formal-parm];

specification-part
indicates the characteristics of each formal parameter. The specification-part is of the form: specifica-
tion [;...;specification];

specification

is one of the following:
type formal-parm [,...,formal-parm]
[type] ARRAY formal-parm |[,...,formal-parm]
LABEL formal-parm |,...,formal-parm]
[type] POINTER formal-parm [,...,formal-parm]
[typel PROCEDURE formal-parm 1,....,formal-parm]

7-2

option-part
specifies which options are to be in effect. The option-part is of the form: OPTION option [.,...,option]

option
is UNCALLABLE, PRIVILEGED, EXTERNAL, CHECK level, VARIABLE, FORWARD, INTER-
RUPT, or INTERNAL. Each option is described fully below, starting with paragraph 7-5.

level
is an unsigned decimal, based, composite, or equated integer constant between 0 and 3 inclusive.

procedure body
is one of the following:
1. statement
2. BEGIN
[local-data-declarations]
lexternal-procedurelintrinsic-declarations]
[local-subroutine-declarations]

statement [;...; statement]
END

statement
is any executable SPL statement (see Sections IV through VI).

local-data-declarations
include any or all of the following (intermixed in any order):

define declaration(s)

equate declaration(s)

local simple variable declaration(s)
local array declaration(s)

local pointer declaration(s)

label declaration(s)

switch declaration(s)

entry declaration(s)

external-procedurelintrinsic-declarations
are intrinsic declarations and procedure declarations for external procedures, intermixed in any order.

local-subroutine-declarations
are local subroutine declarations (described fully later in this section).

A procedure is a self-contained section of code which is called to perform a function. Procedures are
hardware-dependent in SPL — they are called using the PCAL instruction and return using the EXIT
instruction; the PRIVILEGED and UNCALLABLE options are hardware-defined and checked; and
local variables can be allocated relative to the Q-register since it is set to a fresh area of the stack by
the PCAL instruction. Because of the hardware capability provided for procedures, they can be called
recursively (that is, a procedure can call itself). For the syntax and semantics of calling procedures, see
“Function Designator” in paragraph 4-6 and “Procedure Call Statement” in paragraph 5-8. Multiple
entry points for procedures are covered under “Entry Declaration” in paragraph 7-30.

7-3

7-3. DATA TYPE

If a data type is specified for a procedure, that procedure is a function and can be called within
expressions. It returns a value of the type specified by assigning the value to its name somewhere
within the procedure body in an assignment statement. For details on calling functions, see “Function
Designator” in paragraph 4-6.

If a data type is not specified, the procedure does not return a value and cannot be called as a function.

7-4. PARAMETERS

The formal parameters (if any) of a procedure must be fully specified as to type and whether each is
call-by-value or call-by- reference. The formal parameters can then be used within the procedure body
as if they were locally declared identifiers. When the procedure is called, an actual parameter is
supplied for each dummy (formal) parameter. Up to 31 formal parameters can be specified for each
procedure.

Simple variables, arrays, labels, pointers, and procedures can be passed as parameters. Simple
variables and pointers can be passed by value or by reference; procedures, labels, and arrays are
passed by reference only.

The VALUE list specifies which parameters are to be passed by value; parameters not listed in the
VALUE list are passed by reference. When a parameter is called by value, the value of the actual
parameter is specified by an expression and is loaded onto the stack. Value parameters are handled
exactly as local variables from that point on; any changes to them are limited to the scope of the
procedure. For reference parameters, the address of the parameter is loaded onto the stack instead of a
value; changes to reference parameters can change the value of the actual parameter outside the
procedure.

The VARIABLE option allows a variable number of parameters to be passed (see “Options,” paragraph
7-7).

Actual parameters (when the procedure is called) can be constants, expressions, simple variables,
array references, pointer references, procedure identifiers, label identifiers, or stacked values (* in
place of a parameter indicates that the parameter value or address has been loaded onto the stack by
the user; see “Procedure Call Statement” in paragraph 5-8 for details).

If the formal parameter is a simple variable, it is passed the address (call-by-reference) or actual value
(call-by-value) of a data item. If the formal parameter is an array, it is passed the address of the zero
element. Thus, all arrays, even direct arrays, are effectively passed as indirect arrays. If the formal
parameter is a pointer, it is passed the addresss (call-by-reference) or contents (call-by-value) of the
pointer. Parameters are stored in Q—3—n to Q—4 where n is the number of words required for
parameter storage (maximum 69). Call-by-reference parameters, except labels, use one word. IN-
TEGER, LOGICAL, and BYTE values also use one word; DOUBLE and REAL values use two words;
labels use three words; and LONG values use four words.

7-4

Table 7-1 shows what actual parameters can be passed to what formal parameters (a blank space
indicates an error condition): '

NOTE

If the actual-parameter is a byte array and the formal-parameter
is an array with a different data type, the byte address is con-
verted to a word address by arithmetically right shifting the byte
address by one bit. Thus, the maximum byte address is
DB+ 32767 (which equals DB+ 16383 words). Additionally, the
array in the procedure begins on a word boundary regardless of
whether or not the starting byte of the actual-parameter starts on
a word boundary.

Table 7-1. Parameters Passed to Formal Parameters

Formal Parameter
Actual
Simple Simple . .
Parameter Variables Variables Arrays ;z'fr;tr:fg Po'\?;ﬁ:eBy Procedures | Labels
By Reference | By Value
Warning (uses | Must be Warning (uses |Warning (uses | Warning (uses
Constant 1 word as same word | 1 word as 1 word as 1 word as
address) size. address) address) address)
Must be
Expression same word
size.
Simple Variable OK Must be OK, loads ad- OK, load ad-
Identifier same word | dress of simple dress of simple
size. variable variable
Array oK Must be oK oK
Reference same word
size.
Pointer oK Must be OK OK OK
Reference same word
size.
Procedure
Identifier OK
Label ldentifier oK
*
(stacked) OK oK OK oK oK OK

7-5

7-5. OPTIONS

The option part of a procedure declaration consists of the reserved word OPTION followed by a list of
option words separated by commas and terminated by a semi-colon. The meaning of the various
options are discussed in the following paragraphs.

7-6. OPTION UNCALLABLE. This option causes the “uncallable” bit to be turned on in the

Segment Transfer Table entry for the procedure. The uncallable bit is examined by the PCAL instruc-
tions to restrict access to procedures that specify this option. Uncallable procedures can only be called
by code executing in privileged mode. If this option is not specified, the procedure is callable.

7-7. OPTION PRIVILEGED. This option causes the procedure to be run in privileged mode,

assuming that the person running the program is allowed to execute in privileged mode by the
operating system. If this option is not specified, the procedure runs in user mode.

7-8. OPTION EXTERNAL. This option specifies that the procedure body (or code) exists
external to the program being compiled. The procedure body is not included in the declaration and is
linked to the main program later by the operating system. If you need to refer to a procedure compiled
separately, you must include an OPTION EXTERNAL declaration for the procedure which indicates
to the compiler the type and number of parameters. Intrinsics are the only procedures not requiring a
procedure declaration (see “Intrinsic Declaration” in paragraph 7-34). When procedures are compiled
separately (to be called later as option EXTERNAL), they can use the EXTERNAL-GLOBAL
mechanism to establish data linkages.

7-9. OPTION CHECK. This option is provided for option external procedure declarations
which will subsequently be called as externals by other programs. The option specifies how much
checking is done by the operating system between the option external declaration in the calling
program and the actual procedure declaration as compiled. At PREP time, errors from RL and USL
procedures are detected. At RUN time, errors from SL procedures are detected.

If this option is not specified, no checking is performed. Otherwise, the smaller of the two levels, the
level specified in the calling program and the level specified in the external procedure, is used to
determine the level of checking. Intrinsics determine their level of checking, never the caller. The
check values are:

0 — no checking
1 — check procedure type only.
2 — check procedure type and number of parameters.

3 — check procedure type, number of parameters and type of each parameter.

7-10. OPTION VARIABLE. This option specifies that the procedure can be called with a
variable number of actual parameters. The compiler generates code (when the procedure is called) to
provide the procedure with a parameter bit mask in location Q-4 (also Q-5 if more than 16
parameters). If an actual parameter is missing (for example, NOW(A,,C)), the corresponding bit in the
mask is set to zero. The correspondence is from right to left with the rightmost bit (bit 15) correspond-
ing to the right parameter. In the procedure call, the occurrence of a right parentheses before the
parameter list is filled, implies that the rest of the parameters are missing. When the procedure is
entered, it is the responsibility of the procedure to examine the bit mask. Parameters always occur in
the same Q- address, but missing parameters have garbage in their locations.

7-6

7-11. OPTION FORWARD. This option specifies that the complete procedure declaration will
be introduced later in the program. FORWARD is used to circumvent contradictions incurred by
recursion when a procedure calls itself indirectly. Procedures must be declared before being refer-
enced.

7-12. OPTION INTERRUPT. This option specifies that the procedure is an external interrupt
procedure. The structure and uses of interrupt routines are covered in the HP 3000 Multiprogramming
Executive Operating System (MPE) manuals.

7-13. OPTION INTERNAL. A procedure with this option cannot be called from another seg-

ment. This makes processing of the procedure more efficient for the loader subsystem and allows more

than one segment to have a procedure with the same name. INTERNAL procedures cannot be moved

to another segment or called from a procedure in another segment. This option applies to code segments
that are put into the SL only. See the MPE Segmenter Reference Manual, Section 3.

7-13A. OPTION SPLIT. This option is intended specifically for privileged users running in
split-stack mode to improve the reliability of the generated split-stack code (see section 8-1). When a
procedure specifies this option, generation of the following instructions or declarations will resultinan
error.

¢ Local indirect (DB-relative) arrays
e OWN variables
e Q-relative LRA’s (generated when assigning to a pointer the address of an indexed element of a

local array)

7-14. LOCAL DECLARATIONS

Procedures can declare local variables that are known only within the procedure and are normally
allocated space in the Q+ area when the procedure is called. Thus, they occupy space only when the
procedure is called and are deleted when the procedure exits. As indicated in the syntax, all declara-
tion types are allowed within procedures with these comments:

e Procedures declared within procedures must be OPTION EXTERNAL.

e Data declarations (simple variables, arrays, pointers) must be of the “local” form (see the appro-
priate paragraphs in this section).

There are 127 words available for storage of local variables for each procedure. All simple variables,
pointers, direct arrays, and pointers to indirect arrays, must fit in 127 words. Indirect arrays can
extend past this range as long as the pointer to the zero element is within range.

7-15. OWN VARIABLES. OWN variables are a special variety of local variable; they are
allocated space in the DB area rather than on the top of the stack. If initialization is specified, they are
initialized at the beginning of the program, not every time the procedure is called. Since they are
allocated in the global area, they are not deleted when a procedure exists, but are still in existence, with
their last value, when the procedure is called again. However, they are directly accessible only by the
procedure in which they are declared. OWN variables can be simple variables, pointers, or arrays.

7-16. LOCAL SIMPLE VARIABLE DECLARATIONS

A simple variable declaration specifies the data type, addressing mode, storage allocation, and
initialization value for identifiers to be used as single data items. The data type assigned to a variable
determines the amount of space allocated to the variable and the set of machine instructions which can
operate on the variable.

77

There are three types of local simple variable declarations: standard, OWN, and EXTERNAL. Stand-
ard simple variable declarations can allocate Q-relative storage each time the procedure is called or
can specify the use of a location relative to a base register or another variable. OWN variable
declarations allocate DB-relative storage at the beginning of the program. EXTERNAL variable
declarations link global variables in a separately compiled main program to variables in a procedure;
the global variables must be declared with the GLOBAL attribute.

There are two methods which can be used to link globai variables to variables in separately compiled
procedures. The first method is to use the GLOBAL attribute in the global variable declaration (see
paragraph 3-2) and the EXTERNAL attribute in the local variable declaration. The identifiers in both
declarations must be the same and the Segmenter is responsible for making the correct linkages. The
second method is to include dummy global declarations at the beginning of subprogram compilations.
All global declarations must be included, even for identifiers not referenced in the subprogram, and
they must be in the same order as in the main program. It is possible, although not recommended, to
use different identifiers for the same variable, but you are responsible for keeping them straight. The
second method is faster and requires less space in the USL (User Subprogram Library) files, but does
not protect you against improper linkages.

7-17. STANDARD LOCAL VARIABLES. A standard local variable declaration specifies iden-
tifier(s) which can either be allocated storage each time the procedure is called or which use locations
relative to base registers or other identifiers. Local variables cannot be referenced outside the
procedure in which they are declared.

where

type
specifies the data type of the variables in the declaration. The type may be INTEGER, LOGICAL,

BYTE, DOUBLE, REAL, or LONG.

variable-declaration
is one of the following forms:

variable [:= initial-value]

variable = register [sign offset]
variable = reference-identifier [sign offset]

i

variable
is a legal SPL identifier.

reference-identifier

is any legal SPL identifier which has been declared as a data item except DB,PB,Q,S, or X.
initial-value

is an SPL constant to be used as the value of the variable when the procedure is called.

register
specifies the register to be used in a register reference. The register may be DB, Q, S, or X.

7-8

sign
is + or —.

offset

is an unsigned decimal, based, composite, or equated integer constant.

Form 1 of the variable declaration allocates the next available Q-relative location(s) for the variable.
The amount of space allocated depends on the variable type. If an initial value is specified, the variable
is initialized when the procedure is called. If the constant used for the initial value is too large, it is
truncated on the left except string constants which are truncated on the right. If no initial value is
specified, the variable is not initialized.

Form 2 of the variable declaration equivalences a variable either to the index register (X) or to a
location relative to the contents of one of the base registers (DB, Q, or S). Since the index register is 16
bits, only variables of type INTEGER, LOGICAL, and BYTE may be equivalenced to the Index

register (X).

Form 3 of the variable declaration equivalences a variable to a location relative to another variable.
The reference-identifier must be declared first. For example, the declarations

LOGICAL A;
INTEGER B=A+5;

equivalence B to the location 5 cells past the location of A. Simple variables which are address
referenced to arrays use either the location of the zero element of the array (if direct) or the location of
the pointer to the zero element of the array (if indirect). Note that if the reference-identifier is an array,
only the zero element may be used in a variable reference of a simple variable declaration. In any case,
the final address must be within the direct address range.

DB, PB, Q, S, and X cannot be used as the identifier on the right side of an equals sign in a variable
declaration, because they are interpreted as register references instead of variable references. For
example, consider the declaration

INTEGER A,B,C,DB,D=DB+2;

The variable D is equivalenced to the location 2 cells past the cell to wh1ch the DB register points —
not 2 cells past the location assigned to the variable DB.

The legal combinations of registers, signs, and offsets are shown below

Register Sign Offset
DB + 0 to 255
Q + 0 to 127
Q — 0Oto 63
S - Oto 63
X none none

7-9

7-18. OWN SIMPLE VARIABLES. OWN simple variables are allocated space in the DB-
relative area instead of the Q-relative area. Thus, an OWN variable retains its value from one
execution of the procedure to the next. However, the variable can only be referenced within the
procedure in which it is declared. If an OWN variable is initialized, it is initialized only at the start of
the program instead of each time the procedure is called.

where

type
specifies the data type of the variables in the declaration. The type may be INTEGER, LOGICAL,
BYTE, DOUBLE, REAL, or LONG.

variable
is a legal SPL identifier.

initial-value
is an SPL constant to be used as the value of the variable when the procedure is called.

7-19. EXTERNAL SIMPLE VARIABLES. An EXTERNAL simple variable declaration is
used to link global variables for referencing in procedures compiled separately from the main program.
The identifiers must be the same used in the global declaration and the GLOBAL attribute must have
been specified.

type
specifies the data type of the variables in the declaration. The type may be INTEGER, LOGICAL,
BYTE, DOUBLE, REAL, or LONG.

variable
is a legal SPL identifier.

7-10

7-20. LOCAL ARRAY DECLARATIONS

An array declaration specifies one or more identifiers to represent arrays of subscripted variables. An
array is a block of contiguous storage which is treated as an ordered sequence of “variables” having the
same data type. Each “variable” or element of the array is denoted by a unique subscript; note that
SPL provides one-dimensional arrays only. An array declaration defines the following attributes of an
array:

e The bounds specification (if any) which determines the size of the array and the legitimate range of
indexing.

e The data type of the array elements.

e The storage allocation method.

e The initial values, if desired. Note that arrays local to a procedure cannot be initialized unless they
are PB-relative.

e The access mode (direct or indirect).

There are two types of access modes used for arrays: indirect and direct. An indirect array uses a
pointer to the zero element of the array. Addressing an indirect array element uses both indirect
addressing and indexing. If the array is a BYTE array, the pointer contains a DB-relative byte
address. For all other data types, the pointer contains a DB-relative word address. A direct array uses
a location within the direct address range of one of the registers (DB, Q, or S) as the zero element of the
array and then uses indexing to address a specific array element.

There are three types of local array declarations: standard, OWN, and EXTERNAL. A standard local
array declaration can allocate Q-relative storage each time the procedure is called, PB-relative
storage, or can specify the use of a location relative to a base register or another data item. OWN array
declarations allocate DB-relative storage at the beginning of the program. EXTERNAL array declara-
tions link global arrays in a separately compiled main program to arrays in a procedure. The global
arrays must be declared with the GLOBAL attribute.

There are two methods which can be used to link global arrays to arrays in separately compiled
procedures. The first method is to use the GLOBAL attribute in the global array declaration (see
paragraph 3-3) and the EXTERNAL attribute in the local array declaration. The identifiers in both
declarations must be the same and the Segmenter is responsible for making the correct linkages. The
second method is to include dummy global declarations at the beginning of subprogram compilations.
All global declarations must be included, even for identifiers which are not referenced in the subprog-
ram, and they must be in the same order as in the main program. It is possible, although not
recommended, to use different identifiers for the same array, but you are responsible for keeping them
straight. The second method is faster and requires less space in the USL (User Subprogram Library)
files, but does not protect you against improper linkages.

7-21. STANDARD LOCAL ARRAYS. A standard local array declaration specifies identifier(s)
which can be allocated storage each time the procedure is called, stored in the code segment, or which
use locations relative to base registers or other data items. Local arrays cannot be referenced outside
the procedure in which they art declared.

711

where

type

specifies the data type of the array. The type can be INTEGER, LOGICAL, BYTE, DOUBLE, REAL, or
LONG. If not specified, the array is type LOGICAL.

local-array-dec
is one of the following forms:

1.

array-name(lower:upper) [=Q]

This form is used for an uninitialized array with defined bounds. If =Q is not specified, the
array is indirect and the next available Q-relative location is allocated for the pointer to the
zero element of the array. If = Q is specified, the array is direct and the next available n cells in
the Q+ area are allocated for the array, where n is the number of locations required to store
the array. The zero element of the array must be within the direct address range whether or
not it is actually an element of the array. For example, consider the declaration:

INTEGER ARRAY A(—20:-10)=Q;
The next available Q-relative location is allocated to A(— 20), but all indexing is done relative
to A(0) even though it is not an actual element of the array. The address which A(0) would
have if it were in the array must be between Q—63 and Q-+ 127.
array-name(variable-lower:variable-upper)
This form is used for an indirect array with variable bounds. The bounds are evaluated each
time the procedure is called and storage is allocated accordingly at execution time. The array
cannot be initialized.
array-name(@)=Q
This form is used for an indirect array with undefined bounds. The next available Q-relative
location is used, without being allocated, as the pointer to the zero element of the array. Space
is not allocated for the array nor is initialization allowed.
array-name(*)=Q
This form is used for a direct array with undefined bounds. The next available Q-relative
location is used, without being allocated, as the zero element of the array. Space is not
allocated for the array nor is initialization allowed.

array-name(@) [=register sign offset]

This form is used for an indirect array with undefined bounds whose pointer is DB, Q, or

7-12

S-relative. If a base-register-reference is not specfied, the next available Q-relative cell is
allocated for the pointer to the zero element of the array. If a base-register reference is
specified, then that DB-, Q-, or S-relative cell is used, without being allocated, as the pointer to
the zero element of the array. Space is not allocated for the array nor is initialization allowed.

6. array-name(*)

This form can be used for an indirect array with undefined bounds. The next available
Q-relative cell is allocated for the pointer to the zero element of the array. Space is not
allocated for the array nor is initialization allowed. This form is equivalent to array-name(@)
without a base-register reference.

7. array-name(*) = register sign offset

This form is used for direct arrays with undefined bounds which are DB-, Q-, or S-relative. The
specified cell is used as the zero element of the array; however, space for the array is not
actually allocated and the array cannot be initialized.

8. array-name(*) = reference-identifier [sign offset]

This form is used for equivalencing an array to a location relative to another identifier. The
reference identifier may be a simple variable, a pointer variable, or another array and must be
declared first. The array is a direct array except when the reference-identifier is an indirect
array or a pointer variable and no offset is specified. If an offset is specified, the resulting
address must be within the direct address range. For example, if A is at location Q+ 125, then
the declaration

INTEGER B(*)= A+ 10;

would not be allowed because the direct address range for the Q register is — 63 to + 127. If the
array is direct, the referenced location is used as the zero element of the array. If the array is
indirect, the referenced location is used as the pointer to the zero element except when either
the array or the reference-identifier, but not both is type BYTE, in which case the next
available Q-relative cell is allocated for the pointer to the zero element. Space is not allocated
for the array nor can the array be initialized. DB, PB, Q, S, and X cannot be used as the
reference-identifer because they are interpreted as register references instead.

9. array-name(*) = reference-identifier (index)

This form is used for equivalencing one array to another array. The reference-identifier may be
either an array or a pointer variable and must be declared first. If the reference-identifier is a
direct array, the array is a direct array whose zero element is the location of the referenced
array element. If the reference-identifier is an indirect array or a pointer variable, the array is
indirect. In this case, the next available Q-relative cell is allocated for the pointer to the zero
element of the array when a non-zero index is specified or when either the array or the
reference-identifier (but not both) is type BYTE; otherwise, both use the same location for the
pointer to the zero element. In any case, space is not allocated for the equivalenced array nor
can the equivalenced array be initialized. DB, PB, Q, S, and X cannot be used as the
reference-identifier because they are interpreted as register references instead.

array-name
is a legal SPL identifier.

7-13

reference-identifier
is any legal SPL identifier which has been declared as a data item except DB,PB,Q,S, or X.

register
specifies the base register in a register reference. The register may be DB, Q, or S.

sign
is + or —.

offset

is an unsigned decimal, based, composite, or equated integer constant within the direct address range
as shown below:

Register Sign Offset
DB + 0 to 255

Q + 0 to 127

Q — 0to 63

S - 0to 63

constant-array-dec
is of the form:

array-name(lower:upper) = PB = value-groupl,...,value-group]

lower
specifies the lower bound of the array. It can be any decimal, based, composite, or equated single-word
integer constant or constant expression.

upper
specifies the upper bound of the array. It can be any decimal, based, composite, or equated single-word
integer constant or constant expression.

vartable-lower

specifies the lower bound of a variable bounds array. The variable-lower is an INTEGER, LOGICAL, or
BYTE simple variable.

variable-upper

specifies the upper bound of a variable bounds array. The variable-upper is an INTEGER, LOGICAL,
or BYTE simple variable.

index

indicates the element of the referenced array to be used as the reference location. The index can be any
decimal, based, composite, or equated single-word integer constant.

value-group
is either of the following:

1. initial-value
2. repetition-factor (initial-value [,...,initial-value])

7-14

initial-value
is any SPL numeric or string constant.

repetition-factor

specifies the number of times the initial value list will be used to initialize the array elements. The
repetition-factor can be any unsigned non-zero decimal, based, composite, or equated single-word
integer constant.

Local PB-arrays with defined bounds must be initialized. Initialization consists of a := followed by a
list of numerical constants or strings. A group of constants can be surrounded by parentheses and
preceded by a repetition factor (n) to specify that the constants in parentheses are to be used n times
before going on to the next item in the list. These repeat groups cannot be nested. Elements are
initialized starting with the lowest subscript and continuing up until the constant list is exhausted.
The initialization list must not contain more values than there are elements in the array. If the
constant used for the initial value is too large, it is truncated on the left except string constants which
are truncated on the right. If no initial value is specified, the array element is not initialized. Only the
last array in a declaration list can be initialized.

A PB-relative array allocates storage in the code segment for an array of constants. The entire
PB-relative array must be initialized and cannot be changed during execution. PB-relative arrays can
only be accessed within the procedure in which they are declared and they cannot be passed as
parameters.

7-22. OWN ARRAYS. OWN arrays are allocated space in the DB-relative area instead of the
Q-relative area. Thus, an OWN array retains its values from one execution of the procedure to the
next. However, the array can only be referenced within the procedure in which it is declared. An OWN
array can be passed as a parameter, however. An OWN array must have defined bounds and may be
initialized.

;
o
i ,»A‘ r',x“
o f::m«?‘ , S
¥ i ”t? i ” 1
wx P‘uant

i : e e

x!‘ “w e

-

G
m m’é it it 2 0
i 4 il g i ’r‘m wf xxf“ el f\ i e
. ‘éﬂxm g % m‘, &“ w Ms, w‘ff ,‘wj:,w (,, ﬂ “w' % m i
o W“yﬂ“ o w e & “mn;; i a 0 ’Qiﬁ‘g’;,r*ﬁ'(m’x
I“) F i el w«“ f& . T . i = S d,ms;i,

Jiea LR "
i e " i
; ﬁiﬁ:‘ mx“ww L i w" b : g,“,“ o i s Ll
7 ; L3(0:10):= 10(17),20; -
y 7 g L % Dl e o f i i
s "’v{ﬂ W«s ;m" v i S J’;:f: gs’i,g;@s Ee ,é«sx"’ii W"‘zﬂ;a o
/

‘L Vx”, ey
EAL AY RI(0: b(2:0),6 3& L m,w;a*i“m
Lt 1 50 ;

L

o 0 wmﬁ o n,,

e v et o D o
e x",“*“ Ny G el ‘t"’zw”“‘s e M‘" -
wv L . i m,x,«, e »; “ e
‘m s (e v;wm & Tl “,,n:“ .
,,v“ﬁ‘,x 50 e),‘;ué‘&«fﬁmmu o S

x
e A
Sy nf“ g A
w) ;xww;' el s mx Ry e et
e o NS » o ‘sf ; POl =
i

mvx’,,x ,, fis
e ,ﬂ;,’w ,

own-dec
is of the form: array-name(lower:upper)

own-dec-initial
is of the form: array-name(lower:upper)[:=value-group,...,value-group]]

array-name
is a legal SPL identifier.

7-15

lower
specifies the lower bound of the array. It is a decimal, based, composite or equated single-word integer
constant.

upper
specifies the upper bound of the array. It is a decimal, based, composite, or equated single-word integer
constant.

value-group
is either of the following:

1. initial-value
2. repetition-factor (initial-value [,...,initial-value])

initial-value
is an SPL numeric or string constant.

repetition-factor

specifies the number of times the initial value list will be used to initialize the array elements. The
repetition-factor can be any unsigned non-zero decimal, based, composite, or equated single-word
integer constant.

7-23. EXTERNAL ARRAYS. An EXTERNAL array declaration is used to link global arrays to
arrays in procedures compiled separately from the main program. The array-names must be the same
as used in the global declarations and the GLOBAL attribute must have been specified.

where

type
specifies the data type of the array. The type may be INTEGER, LOGICAL, BYTE, DOUBLE, REAL,
or LONG. If not specified, the array is LOGICAL.

array-name
is a legal SPL identifier.

Array bounds are not specified in an EXTERNAL array declaration. An asterisk (*) is used to signify a

N

direct array and an @ is used for an indirect array.

7-16

7-24. LOCAL POINTER DECLARATIONS

A pointer declaration defines an identifier as a “pointer” — a single word quantity used to contain the
DB-relative address of another data item — the object of the pointer. A pointer declaration defines the
following attributes of a pointer:

e The data type of the object of the pointer.
® The storage allocation method.
¢ The initial address to be stored in the pointer (optional).

When the pointer is accessed, the object is accessed indirectly through the pointer address. The object
is assumed to be (or treated as if it were) the type of the pointer.

As with simple variables and arrays, there are three types of local pointer declarations: standard,
OWN, and EXTERNAL. The standard pointer declaration can allocate the next available Q-relative
cell or specify a location relative to a base register or another data item to be used as the pointer
location. OWN pointer declarations allocate a DB-relative cell for each pointer at the beginning of
program execution. EXTERNAL pointer declarations link global pointers in a separately compiled
main program to a pointer in a procedure (the global pointers must be declared with the GLOBAL
attribute).

There are two methods which can be used to link global pointers to pointers in separately compiled
procedures. The first method is to use the GLOBAL attribute (see paragraph 3-4) in the global pointer
declaration and the EXTERNAL attribute in the local pointer declaration. The identifiers in both
declarations must be the same and the Segmenter is responsible for making the correct linkages. The
second method is to include dummy global declarations at the beginning of subprogram compilations.
All global declarations must be included, even for identifiers not referenced in the subprogram, and
they must be in the same order as in the main program. It is possible, although not recommended, to
use different identifiers for the same pointer, but you are responsible for keeping them straight. The
second method is faster and requires less space in the USL (User Subprogram Library) files, but does
not protect you against improper linkages.

7-25. STANDARD LOCAL POINTERS. A standard local pointer declaration specifies iden-
tifier(s) which can either be allocated storage each time the procedure is called or which use locations
relative to base registers or other identifiers. Local pointers cannot be referenced outside the procedure
in which they are declared. See section 4-4 for examples and information about addresses and pointers.

where

pointer-dec
is one of the following:

1. pointer-name [:= @reference-identifier [(index)]]

This form allocates the next available Q-relative cell for the pointer variable. If the
:=@reference-identifier is used, the pointer is initialized to the address of the reference-
identifier or array-element if an index is included. The reference-identifer must be declared
first.

2. pointer-name = reference-identifier [sign offset]

This form is used to equivalence a pointer variable to a location relative to another identifier.
Space is not allocated for the pointer nor can the pointer be initialized. The resulting address
for the pointer variable must be within the direct address range of the base register which the
reference-identifier uses.

3. pointer-name = register [sign offset]

This form is used to equivalence a pointer variable to a location relative to a base-register.
Space is not allocated for the pointer nor can the pointer be intitialized. The resulting address
for the pointer variable must be within the direct address range of the specified base-register.

4. pointer-name = offset

This form is used only in privileged mode. It is the offset in System DB. The pointer reference
must always be subscripted and cannot be preceded by ‘@’.

type
specifies the data type of the pointer variables in the declaration. The type can be INTEGER,
LOGICAL, BYTE, DOUBLE, REAL, or LONG.

pointer-name
is a legal SPL identifier.

reference-identifier
is any legal SPL identifier which has been declared as a data item except DB,PB,Q,S, or X.

register
specifies the base register in a register reference. The register can be DB, Q, or S.

sign

is + or —.

7-18

offset

is an unsigned decimal, based, composite, or equated integer within the direct address range as shown
below.

Register Sign Offset
DB + 0 to 255
Q + 0 to 127
Q - 0to 63
S - Oto 63

(systeirlrtable) + >=0

index
indicates the array element whose address the pointer will contain. The index can be any decimal,
based, composite, or equated single-word integer constant.

Pointers are initialized with addresses of other variables or constants. The method is to follow the
pointer with :=@ and a data reference (simple variable, pointer element, or array element or :=
constant). The address of the specified data item, adjusted to the address type of the pointer, is stored in
the cell allocated for the pointer. BYTE pointers contain DB-relative byte addresses, whereas all other
types of pointers contain DB-relative word addresses.

See “Pointers” (paragraph 2-20) for methods of referring to and through pointers. Pointers can be
indexed like arrays and can contain word or byte addresses.

Pointers can be declared with all data types; if no type is specified, type LOGICAL is assumed. The
type determines what data type the object of the pointer is assumed to have. This allows objects
declared with one type to be accessed as another data type by accessing them through pointers.

Pointers which are not address referenced are allocated the next available Q-relative location and can
be initialized. Pointers which are referenced use the address of the referenced item or the specified
register relative location and cannot be initialized.

7-26. OWN POINTERS. OWN pointers are allocated space in the DB-relative area instead of
the Q-relative area. Thus, an OWN pointer retains its value from one execution of the procedure to the
next. However, the pointer can be referenced only within the procedure where it is declared. An OWN
pointer cannot be initialized.

where

type
specifies the data type of the objects of the pointers in the declarations. The type may be INTEGER,
LOGICAL, BYTE, DOUBLE, REAL, or LONG. If not specified, type LOGICAL is assumed.

pointer-name
is a legal SPL identifier.

7-27. EXTERNAL POINTERS. An EXTERNAL pointer declaration is used to link global
pointers for referencing in procedures compiled separately from the main-program. The identifiers

must be the same as used in the global declarations and the GLOBAL attribute must have been
specified.

where

type
specifies the data type of the objects of the pointers in the declaration. The type may be INTEGER,
LOGICAL, BYTE, DOUBLE, REAL, or LONG. If not specified, type LOGICAL is assumed.

pointer-name
is a legal SPL identifier.

7-28. LABEL DECLARATIONS

A label declaration specifies that an identifier is used in the program as a label to identify a statement.
Labels are referenced when it is necessary to transfer control tc a specific statement; they need not be
declared explicitly unless the programmer wishes.

7-20

in the
ma

10n8S.

.
.

. .
-
- .
- -

o
S8 =

.

tch declaration.

i wi
ired for documentation purposes.

ormas

i

(below) for use of labels

»”

is accessed as a
ive transfer of control

tch

i

The sw

Bl

iy
e
-

e

L wsw .
WWM@% -

o

e

i
=

i
.

L

the list must conta

ion in

it

itch declarat

In sw.

on

is to allow select

. L .

s G
L

L i TRl 7

in paragraph 1-3. In SPL, a label implicitly declares itself

is given

ect of a GO TO statement

as the obj
in a label declarat

’

ion except as des

tch Declarat

i

((Sw

2) and

fier to an ordered set of labels

i

itch

The purpose of a sw

-

o

KWA@; :

-

. mnwwmmﬂmwx e

e

e U
s

linteger from 0 to n— 1, (where n is the number of labels

ma

1. Entry points are not allowed

iona

t

ion is op

7-21

g i

i

legal SPL identifier.
Labels are used to identify statements as follows

where
label
isa

b

LABEL L1

A:=B;

11

The syntax for labeled statements

i

is used to ident

it

when

fy a statement

tly declared

ici

It need not be expl

See

(paragraph 5

“GO TO Statement”

SWITCH DECLARATIONS

7-29

ion relates an ident

dexed) GO TO statement

itch declarat

A sw

mn

computed (
to any of the statements identified by the labels in the switch declaration.

s
'

s

s

o
-

A
-

-
-

i
S

i

legal SPL identifier.
Only one switch-name can be declared in each switch declaration. Associated with each label in the

is a
identifies the statement to which control is transfered when the switch is referenced.
label 1

switch-name

where
label

t, from left-to-right, is an ord

1
a

paragraph 5-2), the value of an integer subscript determines which label is selected from the list.

list). This integer indicates the position of the label in the list. Each pos
Bounds check

label — null elements are not allowed. When the switch is referenced by a GO TO statement (see

this select

ing in

Switch labels may not occur in subroutines.

7-30. ENTRY DECLARATION

The purpose of a local entry declaration is to specify multiple entry points to a procedure beyond the
implicit entry point which is the first statement of the procedure. Each entry identifier must occur
somewhere in the body as a statement label, but cannot be the object of a GO TO.

label
identifies the statement to be used as an alternate entry point.

By substituting an entry point label for the procedure-name in a function designator or a procedure
call statement, the procedure can be entered at an alternate entry point. Refer to paragraph 4-6 for the
form of a function designator and paragraph 5-8 for the form of a procedure call statement.

7-31. DEFINE DECLARATION AND REFERENCE

A define declaration assigns a block of text to an identifier. Thereafter, when the identifier is used in
the program, the assigned text replaces the identifier. This provides a convenient abbreviation
mechanism to avoid repeating long constructs used many times in a program.

where

identifier
is a legal SPL identifier.

7-22

text
specifies the block of text to be substituted when the define is referenced. The text can be any sequence
of ASCII characters; however, # can only be used within a string.

A define reference may occur anywhere except within an identifier, string, or constant. The text should
make sense when inserted where the define is referenced.

At declaration time, a define has no effect on the compilation of the programi. It has effect only in the
context where it is referenced. For this reason, undeclared identifiers can appear in defines as long as
they have been declared when the define is referenced. Similarly, the define text is checked for syntax
errors in the context where it is referenced, not where it is declared.

Define declarations can be nested, that is, define identifiers can be used in other definitions, but they
cannot be recursive, that is, a define identifier must not appear within its own text, since this leads to
infinite nesting when the define is referenced.

The number sign (#) terminates a define text only if it is not contained in a string. For example, the
string “ABCD#”# is valid text terminated by the second #. Incomplete comments cannot appear in
DEFINEs.

Only one block of text can be assigned to a particular identifier.
For example, here are some sample define declarations and references.

DEFINE I= ARRAY B(0:1)#;

INTEGER I; <<INTEGER ARRAY B(0:1);>>
DEFINE SUM= A+ B+ C+ D+ E#;

J:=SUM; <<J:=A+B+C+D+E;>>

7-32. EQUATE DECLARATION AND REFERENCE

An equate declaration assigns an integer value determined by an expression of integer constants and
other equates, to an identifier. The equate mechanism is only a documentation and maintenance
convenience; it does not allocate any run-time storage, but merely provides a form of consistent
identification for constants. When an equate identifier is used, the appropriate constant is substituted
in its place. When equates are used instead of actual constants, programs can be updated easily;
instead of replacing every occurrence of a constant, only the equate declaration is changed.

7-23

where

identifier
is a legal SPL identifier.

equate-expression
can be either one of or a combination of two forms:

[sign] unsigned-integer [operator unsigned-equate-expr]
(equate-expression)

sign
is+ or —.

unsigned-integer
is an unsigned decimal, based, composite, or equated single-word integer constant.

operator
is +,— %, or /.

unsigned-equate-expr
is an unsigned equate-expression.

The value to be assigned to an equate identifier is determined by an equate expression. Equate
expressions consist of operators (*,/,+,—), unsigned integers, including previously defined equated
integers, and parentheses. Evaluation of the expression proceeds from left to right, except that
multiplication and division (*,/) are done before addition and subtraction (+,—) and expressions in
parentheses are done before the operators that surround them. The value of an equate expression must
fit in a single-word or it will be truncated on the left. Since equate identifiers can be used in equate
expressions, a series of related equate declarations can be set up such that changing only the first
changes all the rest.

Equate identifiers can be used anywhere in the program that an integer or unsigned integer constant
is allowed.

For example, here are some sample equate declarations and references:

EQUATE M=1N=M+1P=N+1;
EQUATE T=20*P/(20—- P+ M);
J:=136*T;

<<M=1, N=2, P=3, T=3, J=408>>

- 7-33. PROCEDURE BODY

The procedure body consists of the local declarations and the statements of the procedure, preceded by
a BEGIN and terminated by an END;. The body can contain any executable SPL statements. If the
body does not contain any local declarations and only one statement, the BEGIN-END pair can be
omitted. The end of the body generates an EXIT instruction; additional exits can be generated using
the RETURN statement (see “RETURN Statement”, paragraph 5-14).

7-24

EXAMPLES

PROCEDURE BLANKBUF <<Name>>
(BUFFER,COUNT); <<Formal Parameters>>
VALUE COUNT; << Value part>>
LOGICAL ARRAY BUFFER; << Specification>>
INTEGER COUNT; << Specification>>
<<Empty Option Part>>
<<Procedure-Body>>
BEGIN
LOGICAL BLANKWORD := “ ”; <<Data Group>>
BUFFER := BLANKWORD; << Statements>>
MOVE BUFFER(1):= BUFFER,(COUNT);

END; <<End Procedure Declaration>>

<<Sample Function and Call>>
BEGIN _
INTEGER NUM:=108,NIX;
INTEGER PROCEDURE VAL(A,B,C); << Function Declaration>>
VALUE A,B,C;
INTEGER A,B,C;
VAL:=(A+ B)*C;
<<Main Program>>
NIX:=NUM/VAL(4,5,6); <<Equivalent to NIX:= NUM/((4+ 5)*6);>>
END.

<<OPTION FORWARD example>>
PROCEDURE PROC1; OPTION FORWARD; << Dummy declaration>>
PROCEDURE PROC2; OPTION FORWARD; << Dummy declaration>>

PROCEDURE PROC1; <<Real declaration>>
IF X=(Y:=Y+1) THEN PROC2;

PROCEDURE PROC2; <<Real declaration>>
IF X= (Z:=Z+1) THEN PROCI;

7-34. INTRINSIC DECLARATIONS

An intrinsic declaration specifies that one or more of the system-provided procedures (intrinsics) will
be used by the program. Intrinsics are pre-compiled procedures supplied to SPL programmers for
performing input/output, file access, and utility functions as part of the Multiprogramming Executive
(MPE). SPL provides a simple interface to intrinsics because SPL does not have built-in construets for
input/output as provided by FORTRAN, BASIC, COBOL, and other high-level languages. Input and
output of data in SPL programs must be performed with the MPE file system intrinsics. The user can

also declare intrinsics from his own intrinsic file.

7-25

where

file
is any valid random-access file of the operating system.

procedure-name
is the name of an intrinsic procedure.

Unless an intrinsic file is specified, the procedure names in an intrinsic declaration must be included
in an installation-defined intrinsic file. The SPL compiler searches the file for the intrinsic name and,
if it is found, inserts the declaration for the intrinsic into the program. The declaration is equivalent to
an OPTION EXTERNAL procedure declaration (see “Procedure Declaration”, paragraph 7-2) and
specifies the procedure’s parameters, etc. Operating System intrinsics are described in the MPE
Intrinsics Reference Manual. These intrinsics are called like normal external procedures.

The programmer can specify his own intrinsic file in parentheses. In this case, the compiler searches
for the procedure name and declaration in the file specified, rather than in the system file. Appendix C
describes how to build intrinsic files.

7-35. SUBROUTINE DECLARATION

A subroutine declaration defines an identifier as a subroutine and specifies what attributes the
subroutine will have:

¢ Data type of result for function subroutines.
¢ Type and number of formal parameters.
® Statements of the subroutine body.

Subroutines are called by the identifier and a list of actual parameters. Subroutines can be declared

either globally or locally, but global subroutines cannot be accessed locally. Local declarations are not
allowed within subroutines.

where

tvpe
indicates that the procedure is a function procedure that returns a value of the specified data type. The
type is INTEGER, LOGICAL, BYTE, DOUBLE, REAL, or LONG.

subroutine-name
is an SPL identifier used to identify the subroutine.

formal-parm »
is an SPL identifier which is used as a local identifier to reference an actual-parameter.

value-part

indicates which formal parameters are to be passed by-value. All parameters which are not specified in
the value-part are passed by-reference. The value-part is of the form: VALUE formal-parm
[,....formal-parm];

specification-part
indicates the characteristics of each formal parameter. The specification-part is of the form: specifica-
tion [;...;specification]

specification

is one of the following:
type formal-parm |,...,formal-parm}
[type] ARRAY formal-parm [,...,formal-parm]
[type] POINTER formal-parm [,...,formal-parm]
[type] PROCEDURE formal-parm [,...,formal-parm]

statement
is an executable SPL single or compound statement (see sections IV through VI).

Subroutines have the same parameter conventions as procedures except that options such as VARIA-
BLE, EXTERNAL, and CHECK are not provided and subroutines cannot be passed labels. Sub-
routines can have a data type and can be functions just as procedures can. The subroutine body
consists of an executable SPL statement, including a compound statement, but cannot contain declara-
tions. Global subroutines can reference global variables and local subroutines can reference both local
and global variables. Subroutines can be called recursively. Subroutines are called using the SCAL
or LRA and BR instructions and return using the SXIT instruction. For details on calling subroutines,
see “Function Designator” (paragraph 4-6) and “Subroutine Call Statement” (paragraph 5-13).

NOTE

You must not explicitly modify the stack within a subroutine
without immediately correcting for any changes. All subsequent
parameter addressing may be incorrect and S may not point to the
return address when SXIT is executed.

1-27

EXAMPLES:

INTEGER SUBROUTINE S(A,B,C);
VALUE A,B,C;
INTEGER A,B,C;
Si=(A— 21+ (B*C);

SUBROUTINE ZERO (ARRY,HISUB);
VALUE HISUB;
INTEGER HISUB;

INTEGER ARRAY ARRY;

BEGIN
I:= 0; <<global variable>>
WHILE I <= HISUB DO

BEGIN
ARRY(I):=0;
I=1+1;
END;
END;
Table 7-1. Procedures vs. Subroutines
PROCEDURES SUBROUTINES
Parameters Parameters
Functions Functions

its own environment

Preserves calling environment and establishes

Executes within the calling environment

Local variables
High overhead
Allows for efficient segmentation

Can be called from any procedure or from
outer block

No local variables
Very low overhead — extremely fast
Must rewrile to segment subroutines

If declared in the outer block, callable only from
outer block

If declared in a procedure, callable only from
that procedure

7-28

SECTION VIIi
INPUT/OUTPUT

SECTION

VIl

8-1. INTRODUCTION TO INPUT/OUTPUT

To perform input/output in SPL, you must call MPE intrinsics directly since SPL does not have any
input/output statements. This section presents examples of some of the more common input/output
intrinsics. For a complete description of all the system intrinsics, refer to the MPE Intrinsics Reference
Manual. For a complete discussion of MPE file commands, refer to the MPE Commands Reference

Manual.
Below is a list of some of the more common input/output intrinsics and their names.

Table 8-1. Common Input/Output Intrinsics

FOPEN Opens afile

READ Reads an ASCII string from the job/session input device ($STDIN)

READX Reads an ASCI! string from the job/session input device ($STDINX)

FREAD Reads alogical record from a seguential file on any device to the user’'s data stack
FREADDIR Reads a logical record from a direct access file to the user’s data stack
PRINT Prints character string on job/session list device

FWRITE Writes a logical record from the user’s stack to a sequential file on any device
FWRITEDIR Writes a logical record from the user’s stack to a direct access disc file
FUPDATE Updates a logical record residing in a disc file

FCLOSE Closes afile

FCHECK Requests details about file input/output errors

FCONTROL Performs control operations on a file or terminal device

FSPACE Spaces forward or backward on a file

All input/output is performed on a word basis using two bytes per word. Although you can pass a byte
array to a system intrinsic, the address is converted to a word address and a warning message issued.

To avoid this, you can use array equivalencing:

BYTE ARRAY BUF(0:71);
ARRAY WBUF(*)=BUF,;

For all non-input/output operations, you would use BUF, (for example, to prepare the buffer for

writing), whereas for all calls to the input/output intrinsics, you would pass WBUF.

o0
=

SPLIT-STACK OPERATIONS: During normal operation, the DB register points to the user process
stack. Some operations with extra data segments require that DB be set to the base of the extra data
segment while DL and all other data registers remain associated with the stack. When a process is
operating in this mode, it is said to have a split stack. Several of the MPE intrinsics deal with DB in this
manner; however, you need not be concerned with the mechanics of the operation because, while the
stack is “split”, only system code is executing. It is possible, however, if you are a privileged mode user,
to force your process to operate in split-stack mode explicitly. If you do this, you must recognize that
some of the normal callable intrinsics may not be called when DB does not point to the stack. Such
intrinsics, if called by a privileged process in split-stack mode, can result in system failures. If you are
not a privileged mode user, you need not concern yourself with this restriction and you may assume that
intrinsics will not operate in split-stack mode unless otherwise stated.

The normal checks and limitations that apply to the standard
users in MPE are bypassed in privileged mode. It is possible for a
privileged mode program to destroy system integrity, including
the MPE operating system software itself. Hewlett-Packard can-
not be responsible for system integrity when programs written by
users operate in privileged mode.

8-2. OPENING A NEW DISC FILE
(Please refer to the MPE Intrinsics Reference Manual for details on the FOPEN procedure.)
Figure 8-1 contains an SPL program which opens two files: a card reader file and a new disc file.
The second FOPEN call in figure 8-1
OUT:=FOPEN(OUTPUT,%4,%101,128);
opens the new disc file. The parameters specified are
formaldesignator DATAONE, which is contained in the byte array OUTPUT

foptions %4, for which the bit pattern is as follows:

0 1 2 3 4 5 6 7 8 9 10 | 11 | 12 |} 13 | 14 | 15

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

4

The above bit pattern specifies the following file options:

Domain: New file, no search of system or job temporary file directory is
necessary. Bits (14:2) = 00.

ASCII/Binary: ASCII. Bit (13:1) = 1.

aoptions

%101, for which the bit pattern is as follows:

0 1 2 3 4 5 6 7 8 9 10111)12 | 13| 14 | 15
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
1 0 1

The above bit pattern specifies the following access options:

Access Type: Write access only. Bits (12:4)= 0001 Exclusive: Exclusive
access. Bits (8:2)=01.

All other parameters are omitted from the FOPEN intrinsic call.

PAGE 0001

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00005000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000
00048000
00045000
00050000
00051000
00052000

PRIMARY

NO,

HEWLETT=PACKARD 32100A.05,1

00000
00000
00000
00005
00004
00005
00005
00005
00005
00005
00005
00005
60005
00012
00013
00013
00015
00017
00017
00017
00030
00031
00031
00033
00035
00035
00035
00035
00043
00044
00044
00046
00050
00050
00051
00051
00056
00057
00057
00061
00063
00063
00063
00066
00066
00066
00072
00073
00073
00075
00077
00077

0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
1
1
1
1
2
2
2
1
1
1
1
1
2
2
2
1
1
1
1
1
2
2
2
1
1
1
1
1
1
1
-
2
2

1

SPL/3000

$CONTROL USLINIT

BEGIN

BYTE ARRAY INPUT(0:6) 3="INFILE "3

BYTE ARRAY DEV(0:4)3="CARD "}
BYTE ARRAY QUTPUT (037) :="DATAONE 3}
ARRAY BUFFER(0:127)3
INTEGER INsOUT,LGTHS

TUE .

ocT

Toe

1975y 10:30 AM

INTRINSIC FOPENSFREADsFWRITE)FCLOSEsPRINT*FILEYINFO,0QUITS

<< END OF DECLARATIONS >>

IN:=FOPEN(INPUT 9559094 0+DEV) §

IF < THEN
BEGIN
PRINT*FILE*INFO(IN)S
QUIT(1)}
ENDS$

: i i

COPY'LOOP:

LGTH:!=FREAD (IN+BUFFER+40) }
IF < THEN
BEGIN
PRINTFILE*INFO(IN)}
QUIT(3)%
END3
IF > THEN GO END'OF'FILES

FWRITE (QUT+BUFFERsLGTH,0) 3
IF <> THEN
BEGIN
PRINTYFILE*INFO(OUT} S
QUIT(4)3
END?Y

GO COPY'LOOP}

END'OF'FILES

END,

DB STORAGE=%0073

FRRORS=0003

PROCFSSOR TIME=0:1003033

FCLOSE(OUT»%1140) %
IF < THEN
BEGIN
PRINT*FILETINFO(OUT)$
QUIT(S) 3
END3

SECONDARY DB STORAGE=%00213

NO, WARNINGS=000
ELAPSED TIME=0:00:46

<<CARD READER>>
<<CHECK FOR ERROR>>

<<PRINT ERROR>>
<<ABORT>>

<<READ A CARD>>
<<CHECK FOR ERROR>>

<<PRINT ERROR>>
<<ABORT>>
<<CHECK FOR EOF>>

<<COPY CARD TO DISC>>
<<CHECK FOR ERROR>>

<<PRINT ERROR>>
<cABORT>>

<<CONTINUE COPYING>>
<<MAKE PERMANENT>>
<<CHECK FOR ERROR>>

<<PRINT ERROR>>
<<ABORT>>

8-3

Figure 8-1. Opening a New Disc File

Once the file is opened, the file number (used by other file system intrinsics when referencing this file)
is returned to the variable OUT.

The condition code is checked with the

IF < THEN

statement. If the condition code is CCL, signifying that the FOPEN request was denied, the next four
statements, starting with the BEGIN statement are executed.

PRINT'FILE'INFO(OUD);

calls the PRINT'FILE’INFO intrinsic, which prints a FILE INFORMATION DISPLAY on the stand-
ard list device, enabling you to determine the error number returned by FOPEN. The parameter
(OUT) specifies the file number returned through the FOPEN intrinsic. If the file was not opened
successfully, OUT=0, where 0 specifies that the FILE INFORMATION DISPLAY will reflect the
status of the file referenced in the last call to FOPEN. See the MPE Intrinsics Reference Manual for a

discussion of the FILE INFORMATION DISPLAY.
The QUIT intrinsic call
QUIT(2);
aborts the process. The parameter (2) is an arbitrary user-supplied number. When a QUIT intrinsic is
executed, this number is printed as part of the resulting abort message, allowing you to determine, in
the case of multiple QUIT intrinsic calls in a program, which specific QUIT call was executed.
NOTE
The QUIT intrinsic causes MPE to close all files with no change.

Thus, new files are deleted, old files are saved and assigned to the
same domain to which they belonged previously.

8-3. READING A FILE IN SEQUENTIAL ORDER

(Please refer to the MPE Intrinsics Reference Manual for details on the FREAD procedure.)

To read records, or portions of records, from a file in sequential order, you use the FREAD intrinsic.
When the FREAD intrinsic executes, a logical record pointer advances to the next record. Then, the
next time the FREAD intrinsic is called, the next record is read. Even if a portion of a record is read, a

subsequent FREAD ignores the unread portion of the last record (because the logical record pointer
has advanced) and begins reading the next record.

NOTE

The logical record pointer is a number kept by MPE to indicate
the next sequential record to be accessed in a file.

84

PAGE 0001 HEWLETT-PACKARD 32100A.,05.1 SPL/3000 TUEs OCT T7s 1975s 10:30 AM

SCONTROL USLINIT

BEGIN
BYTE ARRAY INPUT(016) ¢t=WINFILE "3
BYTE ARRAY DEV(0:4)3="CARD "3
BYTE ARRAY OUTPUT(0:7) :="DATAONE "}
ARRAY BUFFER(0:127)3
INTEGER INyOUTsLGTHS

00001000 00000
00002000 00000
00003000 00000
00004000 00005
00005000 00004
00006000 00005
00007000 00005
00008000 00005
00009000 00005
00010000 00005
00011000 00005
00012000 00005

INTRINSIC FOPENsFREADFWRITEZFCLOSEoPRINTYFILE'YINFO.QUITS

<< END OF DECLARATIONS >>

00013000 00005 IN:=FOPEN(INPUT ¢%5+940sDEV) <<CARD READER>>
00014000 00012 IF < THEN <<CHECK FOR ERROR>>
00015000 00013 BEGIN

00016000 00013 PRINT'FILECINFO(IN) S <<PRINT ERROR>>
00017000 00015 QUIT(1)3 <<ABORT>>

00018000 00017 END3$

00019000 00017

00020000 00017 OUT:=FOPEN(OUTPUT»%4+%101,128) 3 <<NEW DISC FILE>>
00021000 00030 IF < THEN <<CHECK FOR ERROR>>
00022000 00031 BEGIN

00023000 00031 PRINT'FILE*INFO(OUT) <<PRINT ERROR>>
000240006 00033 QUIT(2)3 <<ABORT>>

00025000 00035 END1

00026000 00035

00027000 00035 COPY*LOOP:

00028000 00035
00029000 00043
00030000 00044
50031000 00044
00032000 00046
00033000 00050
00034000 00050
00035000 00051
00036000 00051
00037000 00056
00038000 00057
00039000 000S7
00040000 00061
00041000 00063
00042000 00063

TR

——
xp(e .u%s e
Uil

I\)NN.—-.—-&-»--—-.—-MNNl\)'—on—-v--‘v-‘mmN--t—a--r-.—ommwuwb—uwmmmun—o—-wo—an—b—-Hi-n-t-no-too

00043000 00063 GO COPY?'LOOP} <<CONTINUE COPYING>>
00044000 00066

00045000 00066 ENDYOF'FILE?S

00046000 00066 FCLOSE(OUT+%1140) % <<MAKE PERMANENT>>
00047000 006072 IF < THEN <<CHECK FOR ERROR>>
00048000 00073 BEGIN

00049000 00073 PRINT'FILE*INFO(OUT) S <<PRINT ERROR>>
00050000 00075 QUIT(S)$ <<ABORT>>

00051000 00077 END$

00052000 00077 1 END,

PRIMARY DB STORAGE=%0073 SECONDARY DB STORAGE=%00213
NO, FRRORS=0003 NO. WARNINGS=000

PROCESSOR TIME=0:00:033 ELAPSED TIME=0:00344

Figure 8-2. FREAD Intrinsic Example
8.5

The program shown in figure 8-2 reads a card file. The FREAD statement
LGTH:=FREAD(IN,BUFFER,40);

reads a record from the card reader file designated by the variable IN (the file number was assigned to
IN when the FOPEN intrinsic opened the file) and transfers this record to the array BUFFER in the
stack. The statement reads up to 40 words from the record, then returns a positive value to LGTH
which indicates the actual length of the information transferred.

If an error occurs during execution of the FREAD intrinsic, a condition code of CCL is returned. The
statement

IF < THEN

checks the condition code and, if the condition code is CCL, the next four statements are executed. The
PRINTFILE’INFO intrinsic call causes a FILE INFORMATION DISPLAY to be printed on the output

device so that you can determine the error number returned by FREAD, and the QUIT intrinsic aborts
the process.

When the end-of-file is encountered on the card file, a condition code of CCG is returned. The
statement

IF > THEN GO END’OFFILE;

checks for this condition code and, when it occurs, transfers program control to the label
END’OF’FILE. If the end-of-file condition is not encountered, the FWRITE siatemen(is executed and
the

GO COPY’LOOP;

statement transfers program control back to the beginning of the copy loop. The FREAD intrinsic is
called again and the next record is read.

8-6

8-4. WRITING RECORDS INTO A FILE IN SEQUENTIAL ORDER
(Please refer to the MPE Intrinsics Reference Manual for details on the FWRITE procedure.)

To write records, or portions of records, from your buffer to a file in sequential order, you use the
FWRITE intrinsic. A

When the FWRITE intrinsic executes, the logical record pointer advances to the next record. Then, the
next time the FWRITE intrinsic is called, information is written into the next record position. When
information is written to a file composed of fixed-length records (and buffering is not specified in the
FOPEN call), the file system will pad all short records with binary zeros for a binary file, or ASCII
blanks for an ASCII file to bring the records up to the fixed length required. If nobuff was specified in
FOPEN, automatic buffering is not provided by MPE.

The FWRITE statement in figure 8-3
FWRITE(OUT,BUFFER,LGTH,0);

writes a record from the array BUFFER into the disc file designated by the variable OUT. The file
number was assigned to OUT when the FOPEN intrinsic opened the file. The length of the record is
specified by LGTH. LGTH was assigned its value when the FREAD intrinsic read the record and
transferred it to BUFFER, so in this case the same number of words being read from the card reader
are being written to the disc.

The control parameter is specified as 0, which specifies that no carriage control code is included in the
record. Carriage control, of course, is not necessary for a disc file but the parameter is included because
all of FWRITE’s parameters are required.

A condition code of CCE signifies that the FWRITE request was granted. The statement

IF <> THEN
checks for a “not equal” condition code and, if CCG or CCL is returned, the next four statements are
executed. The PRINT'FILE’INFO intrinsic causes a FILE INFORMATION DISPLAY to be printed
on the output device, enabling you to determine the error number returned by FWRITE. The QUIT
intrinsic aborts the process.
If CCE is returned, the next four statements are not executed, the GO COPY’LOOP statement is

executed, and the FREAD and FWRITE intrinsic calls are repeated until FREAD detects the end of
the card file.

8-7

PAGE noo01

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000
00048000
00045000
00050000
00051000
00052000

PRIMARY

HEWLETT=-PACKARD 32100A,05.1

00000
00000
00000
00005
00004
00005
00005
00005
00005
00005
00005
00005
00005
00012
00013
00013
00015
00017
00017
60017
00030
00031
00031
00033
00035
00035
00035
00035
00043
00044
00044
00046
00050
00050
00051
00051
00056
00057
00057
00061
00063
00063
00063
00066
00066
00066
00072
00073
00073
00075
00077
00077

DB STORAGE=%0073
NO, FRRORS=0003%
PROCESSOR TIME=0:003033%

T N N e e bt et et et 1t TN A) bt et bt bt et N) P) et bt bt s 0t TN PN N et bt 0t bt N TN PN e et Gt et Bt bt et et G (o et et et D D

SPL/3000

SCONTROL USLINIT

BEGIN
BYTE ARRAY INPUT(0t6) IZWINFILE "3
BYTE ARRAY DEV(0:4)31="CARD "3
BYTE ARRAY OUTPUT(0:7) :="DATAONE n}
ARRAY BUFFER(0:127)3
INTEGER INsOUTSLGTHY

TUE. OCT

1975, 10330 AM

INTRINSIC FOPENsFREADsFWRITEsFCLOSEsPRINTIFILE*INFO,QUITS

<< END OF DECLARATIONS >>

INI=FOPEN(INPUTs%5+940+DEV) 3
IF < THEN
BEGIN
PRINT*FILEYINFO(IN)S
QUIT(1)}
END3

OUT:=FOPEN(OUTPUT+%4+%101,128) 3
IF < THEN
BEGIN
PRINT*FILEYINFO(OUT)
QUIT(2)3
END}

GO COPY'LOOPS

ENDYOF'FILE?S
FCLOSE(OUTs%1140) 3
IF < THEN
BEGIN
PRINT*FILE*INFO(OUT)$
QUIT(5)3
END}S
END,
SECONDARY DB STORAGE=%00213
NO. WARNINGS=000
ELAPSED TIME=0100344

<<CARD READER>>
<<CHECK FOR ERROR>>

<<PRINT ERROR>>
<<ABORT>>

<<NEW DISC FILE>>
<<CHECK FOR FRROR>>

<<PRINT ERROR>>
<<ABORT>>

<<CONTINUE COPYING>>
<<MAKE PERMANENT>>
<<CHECK FOR ERROR>>

<<PRINT ERROR>>
<<ABORT>>

Figure 8-3. FWRITE Intrinsic Example

88

8-5. UPDATING A FILE
(Please refer to the MPE Intrinsics Reference Manual for details on the FUPDATE procedure.)

To update a logical record of a disc file, you use the FUPDATE intrinsic.

The FUPDATE intrinsic affects the logical record (or block for NOBUF files) last accessed by any
intrinsic call for the file named, and writes information from a buffer in the stack into this record. Note
that the record number is not supplied in the FUPDATE intrinsic call; FUPDATE automatically
updates the last record referenced in any intrinsic call.

The file containing the record to be updated must have been opened with the update aoption specified
in the FOPEN call and must not contain variable-length records.

Figure 8-4 contains a program that opens an old disc file and updates records in the file. The update
information (employee number) is entered from a terminal (the program was run interactively) into a
buffer in the stack, then the contents of the buffer are used to update the record.

The statement
LGTH:= FREAD(DFILE1,BUFFER,128);
reads an employee record from the file specified by DFILE1 into the array BUFFER in the stack.

The statement
FWRITELIST,BUFFER,—20,%320);

then displays this record on the terminal ($STDLIST has been opened with the FOPEN intrinsic and
the resulting file number was assigned to LIST).

The statement
DUMMY:=FREADIN,BUFFER(30),5);

reads an employee number, entered on the terminal ($STDIN has been opened with the FOPEN
intrinsic and the resulting file number was assigned to IN), into word 30 of the array BUFFER.

The statement
FUPDATE(DFILE1,BUFFER,128);

then calls the FUPDATE intrinsic to update the last record accessed in the file specified by DFILEL.
The contents of BUFFER (including the employee number entered from the terminal) are written into
this record. Up to 128 words are written.

If the FUPDATE request was granted, a CCE condition code results. The statement
IF <> THEN FILERROR(DFILE1,9);

checks for a “not equal” condition code and, if such is the case, calls the error-check procedure
FILERROR. The procedure FILERROR prints a FILE INFORMATION DISPLAY on the terminal,
enabling you to determine the error number returned by FUPDATE, then aborts the programs’s
calling process.

89

PAGE n0n}

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000
00010000
00011000
00012000
0001300n
00014000
00015000
00016000
00017000
0001R000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
000626000
00027000
0n028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000
00048000
00049000
00050000
00051000
00052000
00053000
00054000
00055000
00056000
00057000
00058000

HEWLETT-PACKARD 32100A.05.1 SPL/3000 TUE, OCT

00000
00000
00000
00005
00005
00005
00005
00005
00005
00005
00000
00000
00000
00000
0ooo02
00004
00000
00000
00000
00000
00011
00015
00015
00024
00030
00030
00040
00044
00044
00044
00047
00053
00053
00061
00065
00070
00070
00075
00101
o010l
00110
00114
00115
00115

0o0l2l’

00125
00125
0ol27
00133
00133
00140
00140
00140
00142
00146
00146
00151
00155

0
0
1
1
1
1
1
1
1
1
1
1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1

$CONTROL USLINIT

BEGIN
BYTE ARRAY DATA1(0:7):="DATAONE *i
ARRAY BUFFER(01127)3
INTEGER DFILEYsLGTHyDUMMY s INSLISTS

1975y 10332 AM

INTRINSIC FOPENsFREADsFUPDATEsFLOCKyFUNLOCKsFCLOSE
PRINT!'FILE'INFOsQUIToFWRITE.FREADS

PROCEDURE FILERROR(FILENO,QUITNO) S
VALUE QUITNOS
INTEGER FILENOsQUITNOS
BEGIN
PRINT'FILE'INFO(FILENO)$
QUIT(QUITNO) 3
END3$

<<END OF DECLARATIONS>>

DFILE1:=FOPEN(DATALl+%5+%345+128) %
IF < THEN FILERROR(DFILE1,1)3

INI=FOPEN(+%244) 3
IF < THEN FILERROR(INs2)$

LISTISFOPEN(+%614+%1)3
IF < THEN FILERROR(LIST+3)3

UPDATE'LOOP?
FLOCK(DFILEls1) ¢
IF < THEN FILFRROR(DFILEly4}3

LGTH:=FREAD(DFILE1+BUFFER,128)1
IF < THFEN FILERROR(DFILE1+5)3
IF > THEN GO END'OF*'FILE}

FWRITE (LISTeBUFFERs=20,%320) }
IF <> THEN FILERROR(LIST6) 3

DUMMY 1 =FREAD (INeBUFFER(30)45) 3
IF < THEN FILERROR(IN,7)3
IF > THEN GO END'OFFILEG

<<OLD DISC FILE>>
<<CHECK FOR ERROR>>

<<$STDIN>>
<<CHECK FOR ERROR>>

<<$STDLIST>>
<<CHECK FOR ERROR>>

<<LOCK FILE/SUSPEND>>
<<CHECK FOR ERROR>>

<<GET EMPLOYEE RECD>>
<<CHECK FOR FRROR>>
<<CHECK FOR EOF>>

<<EMPLOYEE NAME>>
<<CHECK FOR ERROR>>

<<EMPLOYFE NUMBER>>
<<CHECK FOR ERROR>>

FUNLOCK (DFILEY) S
IF <> THEN FILERROR(DFILE1+9)}$

GO UPDATE'LOOP}

ENDYOF'FILE?
FUNLOCK (DFILE1)$
IF <> THEN FILERROR(DFILEl+10)3

FCLOSE(DFILE1+0+0)3
IF < THEN FILERROR(DFILEl,s11)%
END,

PRIMARY DR STORAGE=%00T7}$ SECONDARY DB STORAGE=%00204

NO, FRRORS=000$

NO, WARNINGS=000

PROCESSOR TIME=0:003031} ELAPSED TIME=0:00317

<<ALLOW OTHER ACCESS>>
<<CHECK FOR ERROR>>

<<CONTINUE UPDATE>>
<<ALLOW OTHER ACCESS>>
<<CHECK FOR ERROR>>

<<DISP=NO CHANGE>>
<<CHECK FOR ERROR>>

Figure 8-4. FUPDATE Intrinsic Example

8-10

8-6. NUMERIC DATA INPUT/OUTPUT

There are several intrinsics available for converting integer data for transfer between an ASCII file
and the data stack. These intrinsics are as follows:

e ASCII — Converts 16-bit binary number to ASCII representation.
e DASCII — Converts 32-bit binary number to ASCII representation.
e BINARY — Converts an ASCII numeric string to a 16-bit binary numeric.

e DBINARY — Converts an ASCII numeric string to a 32-bit binary number.

(Please refer to the MPE Intrinsics Reference Manual for a complete description of these intrinsics.)

For handling floating point numbers, refer to the EXTIN’ and INEXT procedures in the Compiler
Library Reference Manual.

8-7. FILE EQUATIONS

The standard attributes of files used by an SPL program can be modified through the use of the
MPE :FILE command.

NOTE

Read the discussion of files in the MPE Commands Reference
Manual before attempting to change file attributes with the
:FILE command.

The specifications in a :FILE command do not take effect until the compiled program is running and
the referenced file is opened. The :FILE command specifications hold throughout the entire program
unless superseded by another :FILE command or revoked by a :RESET command. At job or session
termination, however, all :FILE commands are cancelled.

8-11

COMPILER COMMANDS

9.0 COMPILER FORMAT

A compiler listing presents three groups of numbers preceding the program statements. The first group
shows the Editor line numbers of the listing file in decimal format. The second column of five numbers
indicates the machine instruction code reference which is RBM-relative. The third set gives the
BEGIN-END count, or level. :

The BEGIN-END count is useful information for program debugging in locating BEGIN-END pair
mismatches. This is the third group of numbers listed in a compile. It indicates the nesting level of the
statements that follow the BEGIN or END. The count starts at zero and is incremented by one after
each BEGIN statement; it is decremented by one after each END statement. Since the last END
statement ends the compile process, the BEGIN-END count is never decremented to zero.

NOTE

Pressing CONTROL-Y during a compilation causes the current
line number to be displayed along with the number of errors and
warnings.

EDITOR line number

code offsets
BEGIN-END count

-
-

00004 2“7END;
00004 I* I := 99;
00006 1 END.

1 00000 0 ,BEGIN

2 00000 ¥ SINCLUDE XXX Arrows indicate where
1 00000 1 INTEGER I; BEGIN-END count is
2 00000 1 ,BEGIN incremented or decremented
3 00000 2# _BEGIN

4 00000 347 ___- BEGIN

5 00000 4=~ - BEGIN

6 00000 5=—""" - BEGIN

7 00000 6=<"" I = 999;

8 00004 6 - END;

9 00004 5=« - END;
10 00004 4=« ___- END;
11 00004 3= END;
12

3

4

/ global data area size

[PRIMARY DB STORAGE=%001; SECONDARY DB STORAGE=%00000]
NO. ERRORS=0000; NO. WARNINGS=0000
PROCESSOR TIME=0:00:01; ELAPSED TIME=0:00:06

9-1. USE AND FORMAT OF COMPILER COMMANDS

In general, compiler options such as source input merging, listing, format specification, or warning
message suppression are determined by default settings assigned by the compiler. However, the user
can override these settings and select different options by issuing compiler commands. These com-
mands take effect only after access to the compiler is established. They are directed only to the
compiler and are not effective during program execution.

Compiler commands differ in both function and format from compiler language source statements, and
thus are not considered true SPL statements even though they are part of the source program file. The
SPL compiler commands do conform, however, to the general formats for other HP 3000 language
translators such as FORTRAN, COBOL, and RPG. For each function used by more than one language
translator, the same command name is used and, in most cases, the same command parameters also

apply.

where

command-name
specifies the compiler command. The command-name is one of the following: CONTROL, IF, SET,
TITLE, PAGE, EDIT, TRACE or COPYRIGHT.

parameter
specifes an option of the compiler command. The form of a parameter is dependent on the command-
name and is discussed with the appropriate command. In general a parameter is one of the following:

character-string
symbolic-name
keyword [=sub-parameter]

The first dollar sign ($) is required and must be in column 1. The second dollar sign is optional. If
specified, the command is not transmitted to the newfile if a newfile is created during compilation. The
command-name must follow the first $ (or second $ if present) without any intervening spaces. The list
of parameters is separated from the command-name by one or more spaces. Within the list, parameters
are separated from each other by commas. Spaces are allowed before and after the parameters. The
parameter list may continue through column 72 of the source record.

9-2

The sequence field (columns 73-80) of a record containing a compiler command is not part of the
command; however, it may be used for sequence checking during editing and merging operations as
described later under the EDIT command.

NOTE

Only upper-case letters, numbers, and special characters are used
in compiler commands. When lower-case letters are entered as
part of a command, the compiler interprets them as their upper-
case equivalent except within character strings as defined below.

A character-string consists of a sequence of ASCII characters enclosed in quotation marks (). Blank
characters may be included in the string and null strings are allowed. Quotation marks within a string
are entered as two adjacent quotation marks, (*”’) to distinguish them from the quotation marks that
begin and end the string.

A keyword is a reserved word with respect to a given command; they are described under the
appropriate commands. A sub-parameter is a character-string, a symbolic name, or a decimal number.

Comments may be included within any command. A comment is generally used to document the
purpose of coding or to make notations about program logic. A comment is not interpreted as part of
the command, and has no effect upon compilation. It is syntactically treated as a space and can appear
in either of the following locations:

e TFollowing the command-name, separated from it by at least one space.
e Preceding or following any parameter in the parameter list.

A comment cannot be embedded within a parameter; for instance, it cannot appear within a keyword,
preceding or following an equals sign, or within a quoted string. Furthermore, a comment cannot be
continued from one record to the next.

A comment can contain any ASCII character. The comment must begin with two adjacent less-than
signs (<<) and terminate with two adjacent greater-than signs (>>). Since adjacent greater-than
signs terminate a comment, they cannot appear within the comment itself. The comment may

continue through column 72.

The following examples illustrate various ways in which comments can be included in compiler
commands.

1. Following the command-name:

$PAGE <<PAGE EJECT,NO TITLE CHANGE.>>
2. Following the last parameter in a parameter list:

$SET X1=ON,X2=0N,X3=0N<<SWITCHES 1-3 ON.>>
3. Embedded within the parameter list:

$SET X1=0ON,X2=0N,<<LAST SW OFF>>X3=OFF

When the length of a command exceeds one physical record (source card or entry line), the user can
enter an ampersand (&) as the last non-blank character of this record and continue the command on

93

the next record. This is called a continuation record. The text portion of the continuation record, in
turn, must begin with a dollar sign ($) in column 1. Even when a command begins with double dollar
signs, its continuation records still begin with only a single dollar sign. When EDIT/3000 is used to
enter a source program containing compiler command continuation records, a space must be entered
after the ampersand so the ampersand is not interpreted as an EDIT/3000 continuation line.

NOTE

A compiler command record must never be separated from its
continuation record by an SPL source record.

In continuing a command onto another record, you cannot divide a primary command element (a
command-name, keyword, subparameter — including strings, or comment) — no primary element is
allowed to span more than one line.

When the compiler encounters a command containing one or more continuation records, each continu-
ation record is concatenated to the preceding record beginning with the character following the $; each
$ and continuation ampersand is replaced by a space.

The following command is continued onto a second record:

$CONTROL LIST,SOURCE,WARN,MAP,&
$CODE,LINES= 36

It is interpreted as:

$CONTROL LIST,SOURCE,WARN,MAP, CODE,LINES= 36

Even though a comment cannot be divided over more than one line, extensive commentary text
requiring several lines can be entered by enclosing it within separate comments that each occupy one
line.

The following command includes commentary text spread over three lines:

$CONTROL NOWARN <<WARNING MESSAGES ON TRIVIAL ERRORS>>&
$ <<WILL NOT BE LISTED, BUT MESSAGES ON>>&
$ <<FATAL ERRORS WILL APPEAR.>>

A command does not take effect until all of its parameters have been interpreted. Thus, a command
that suppresses source listing output does not affect the listing of any continuation records within the
command itself. Parameters are interpreted from left-to-right. In some cases, parameters may be
redundant or supersede previous parameters within the same command. In other cases, certain
parameters are allowed only once within a command.

In the following command, the redundant parameters LIST and NOLIST each appear twice:

$CONTROL LIST,NOLIST,NOLIST,LIST

Because the final redundant parameter in any $CONTROL command always takes effect, the above
command is equivalent to:

$CONTROL LIST

A summary of the compiler commands for SPL appears in table 9-1.

94

Table 9-1. Compiler Command Summary

COMMAND PURPOSE

$CONTROL Restricts access to listfile; suppresses source text, object code, and symbol table
listing; suppresses warning messages; sets maximum number of lines listed per
page; sets maximum number of severe errors allowed; starts a new segment;
initializes the USL file; lists mnemonics for code generated; assigns a name to the
outer block; allows subprogram compilation; makes outer block privileged,;
makes outer block uncallable; lists address mode and displacement of variables
declared.

SIF Interrogates software switches for conditional compilation.

$SET Sets software switches for conditional compilation.

STITLE Establishes or changes page title on listing.

$PAGE Establishes or changes page title, and ejects page.

SEDIT Specifies editing options during merging such as, omitting sections of old source
program and re-numbering sequence fields.

$COPYRIGHT Specifies copyright information to be copied to the list, USL, and program files.

SSPLIT Enables split-stack checking.

SNOSPLIT Disables split-stack checking.

SINCLUDE Permits inclusion of text from another file into the SPL source file.

9-2. $CONTROL COMMAND

When you call the compiler without specifying a $CONTROL command, the following default options
are in effect:

The compiler is given unrestricted access to listfile.

All source records passed to the compiler by its editor are listed unless the listfile and primary
input file (normally the texifile) are assigned to the same terminal.

Warning messages are listed.

Listing of the symbol table is suppressed.

Listing of the object code generated is suppressed.

The number of lines appearing on each printed page (output to listfile) is a maximum of 60.
The maximum number of severe errors allowed before compilation is terminated is 100.
SPL is called in the program mode, as opposed to subprogram mode.

The segment name is SEG’.

The outer block name is OB’

The mnemonic listing is suppressed.

The USL (User Subprogram Library) file is not initialized unless it is a new file.

Callable, non-privileged outer block.

The above default options can be overridden by entering the $CONTROL compiler command. This
command allows you to restrict access to the listfile, suppress source record listings, produce object
code and symbol table listings, change the maximum number of lines per printed page, and otherwise
alter the normal compiler control options.

where

parameter
specifies an option of the SCONTROL command. A parameter is one of the following: LIST, NOLIST,

96

SOURCE, NOSOURCE, WARN, NOWARN, MAP, NOMAP, AUTOPAGE, CODE, NOCODE, LINES
= nnnn, ERRORS = nnn, USLINIT, DEFINE, SEGMENT = segname, ADR, INNERLIST, MAIN =
program-name, UNCALLABLE, PRIVILEGED, or SUBPROGRAM [(procedure-name[*] [,procedure-
namel[*]1...)].

Each parameter in the parameter list specifies a different option as described below. Unless otherwise
noted, each parameter can appear in a $CONTROL command placed anywhere in the source input.
Each parameter remains in effect until explicitly cancelled by an opposing parameter (for example,
NOLIST cancelling LIST), or until the compilation terminates. In any $CONTROL command, at least
one parameter must be specified. Within the parameter list, the parameters can appear in any order. In
the descriptions below, default parameters are shown in

Allows the compiler unrestricted access to the listfile, permitting the SOURCE, MAP, CODE, and
LINES parameters to take effect when issued. Thé LIST parameter remains in effect until a $CON-
TROL command specifying NOLIST is encountered.

NOLIST

Allows only source records that contain errors, appropriate error messages, and subsystem initiation
and completion messages to be written to the listfile. NOLIST remains in effect until a $CONTROL
command specifying LIST appears.

QURCE|

Requests listing of all source records, as edited by the compiler’s editor, while LIST is in effect. When
the compiler is called with listfile and the primary input file assigned to the same terminal,
NOSOURCE is initially the default. In all other cases SOURCE is the default.

NOSOURCE
Suppress the listing of source text, cancelling the effect of any previous SOURCE parameter.
NOSOURCE remains in effect until SOURCE is subsequently encountered.

Permits the reporting of doubtful minor error conditions in the source input. These reports are
transmitted to the listfile in the form of a warning message. The WARN parameter remains in effect
until a $CONTROL command specifying the NOWARN parameter is encountered.

NOTE

NOLIST does not suppress warning messages — they are sup-
pressed solely by NOWARN.

NOWARN
Suppresses warning messages. The NOWARN parameter remains in effect until a $CONTROL

command specifying WARN appears.

MAP ,

Requests printing of user-defined symbols and their addresses following the source text listing if LIST
is in effect. Reference parameters are flagged with an ‘R’. The MAP parameter remains in effect until a
NOMAP parameter is encountered. Figure 9-1 shows a sample symbol map.

Suppresses printing of symbol map of user-defined symbols thereby cancelling any previous MAP

parameter. The NOMAP option remains in effect until a MAP parameter is ericountered.

9-7

$CONTROL MAP |
BEGIN
INTEGER 1,J:=10;
REAL R1,R2;
ARRAY A(@:10);3
R1:=R2:=2Q0E9;
FOR I:=@ UNTIL J DO
ACI):=2%1;

——

0001092 00000
geen2006 00060
PBR3098 00000
0PeoLP00 OCOO00
0005008 GR000
G028 6000 0000
20007000 00204
000038000 07011

20009000 @06022 END.
IDENTIFIER CLASS TYPE ADDRESS
A ARRAY LOGICAL DB+@@6
I SIMP. VAR. INTEGER DE+080
J SIMP. VAR. INTEGER DB+@@21
R1 SIMP. VAR. REAL DB+g@2
R2 SIMP. VAR. REAL DB+@04
TERMINATE" : PROCEDURE

PRIMARY DB STORAGE=%807; SECONDARY DB STORAGE=200013
NO. ERRORS=000; NO. WARNINGS=68@
PROCESSOR TIME=0:00:00; ELAPSED TIME=@:81:16

END OF PROGRAM

.o

Figure 9-1. Symbol Map

AUTOPAGE

Causes a page eject whenever a procedure declaration is the first token found on a line. If the
declaration is preceded by “COMMENT” or “<<” no page eject will be issued; however, if the embedded
“declaration” occurs on the second or later line of a comment, one will be issued. Similarly, any
documentation placed before the procedure declaration will appear on the preceding page.

CODE

Requests listing of object code generated following the listing of the source text if LIST is in effect. The
CODE parameter remains in effect until the NOCODE parameter is encountered. Figure 9-2 shows a
sample CODE listing.

s
Suppresses listing of object code, thereby cancelling the effect of any previous CODE parameter. The
NOCODE parameter remains in effect until a CODE parameter is encountered.

LINES=rnnn

Limits the number of lines printed on listfile to nnnn lines per page. Whenever the next line sent to
listfile would overflow the line count (nnnn), the page is ejected and the standard page heading and
two blank lines are printed at the top of the page, followed by the line to be transmitted. A page
heading and its following two blank lines are counted against the total line count, nnnn. The

9-8

00021006 G060 | SCONTROL CODE |
PPea2006 0B660 BEGIN
ge0Q30008 00090 INTEGER I,J:=18;

4]
5]
1
PeeoAGGE 906098 1 REAL RI1,R2;
1
1
1
1
1

PP30S000 G0680 ARRAY A(P:18);
| eage 6003 GO000 R1:=R2:=2QE9; |
PO207000 C08G4 FOR 1:=@ UNTIL J DO
0308008 @0811 ACI):=2%13
Peer9s80 @8822 END.

GG@QG[P34013 @246080 161004 161662|8066ﬁ6 251000 171008 021001
PAG16 G41061 50004 140010 P44212 180575 021082 111066 131000
goe28 B57806 @52404 200000

PRIMARY DB STORAGE=%60873 SECONDARY DB STORAGE=%00013
NO. ERRORS=0008; NO. WARNINGS=000
PROCESSOR TIME=0:080:00;5 ELAPSED TIME=8:08:55

END OF PROGRAM

Figure 9-2. $CONTROL CODE Output

subparameter nnnn is an integer ranging from 10 to 9999. The LINES=nnnn parameter remains in
effect until another LINES=nnnn parameter appears. If this parameter is omitted, the default value
assigned is:

60 lines per page for devices other than terminals.
32767 lines per page for terminals.

ERRORS=nnn

Sets the maximum number of severe errors allowed during compilation to nnn; if this limit is
exceeded, compilation terminates and the uslfile is unchanged. If the limit specified has already been
exceeded when the ERRORS=rnnn parameter is encountered, compilation terminates. If the ER-
RORS=nnn parameter is omitted, nnn is set to 100 by default.

USLINIT

Initializes the uslfile to empty status prior to generation of object code. If you do not specify a uslfile or
if you specify a uslfile whose contents are obviously incorrect, the compiler automatically initializes
the uslfile to empty status whether or not USLINIT is specified.

DEFINE
Causes the bodies of DEFINES to be written out to a disc file, thereby increasing the amount of symbol
table space available to the compiler. The SCONTROL option must be invoked before any DEFINEs are
declared.

@000 1006 @P00¢ 0 | SCONTROL ADR |
@P002008 @00CP @ BEGIN

0P003008 GG3a0 INTEGER 1,J:=10;
DB+000 —!
DB+001 —

—

A0RCLA00 OR000 1 REAL RI1,R2;
DB+@@2
DB+@04

PPAPS0006 000006 1 ARRAY A(@:10);
DB+0@6

00036000 Q0066 1 R1:=R2:=20E9;

gPe070008 00064 1 FOR I:=¢0 UNTIL J DO

pegesere ©esll 1 ACId:=2%1I3

0085000 60622 1 END.

PRIMARY DB STORAGE=%@07:3 SECONDARY DB STORAGE=2006013
NO. ERRORS=000:; NO. WARNINGS=000

PROCESSOR TIME=0:00:004; ELAPSED TIME=@:01:085

END OF PROGRAM

Figure 9-3. $CONTROL ADR Output

SEGMENT=segname

Starts a new segment with the specified segname. The segname can consist of up to 15 alphanumeric
characters starting with an alphabetic character. Apostrophes are allowed within the segname except
as the first character. The segname stays in effect until explicitly overridden by another $SCONTROL
SEGMENT or compilation terminates. For a main-body which is to be in a segment by itself, the
$CONTROL SEGMENT should be placed after the procedure and intrinsic declarations and before the
global subroutines and main-body. See figure 1-2 for a sample program using this parameter.

ADR

After each declaration, a record is sent to the listfile if LIST is in effect showing the addressing mode
and displacement of the declared variables. This option is turned off by NOLIST. Figure 9-3 shows a
sample compilation with ADR specified.

INNERLIST

After each statement line, the mnemonics for unoptimized code generated by the compiler are sent to
the listfile if LIST is in effect. In addition to the mnemonic, the octal value and approximate execution
time in microseconds of each instruction are shown. This option is turned off by NOLIST. Figure 9-4
shows a sample INNERLIST output. NOTE: Some address and constant initialization is resolved in
later passes of the compiler and segmenter, so the machine code displayed does not always reflect the
exact machine code executed. (The times shown on the listing are sample times only and are not
accurate for any specific HP3000 model.)

MAIN=program-name

Assigns the specified program-name to the main program. The format for program names is the same
as for segment names. Starting with page 2, the program-name is listed in columns 13-27 of the
heading.

9-10

¢AGE1006 €20¢0 8 | SCONTROL INNERLIST |
¢003203¢ ©Ge0Pe 8 BEGIN
020C3000 CBUBE 1 INTEGEP I1,J:=10;
COGRAGE8 2958 | REAL R1,R2;
PGO85E08 @00es 1 ARRAY ACE:1033
0EGG6EA8 GOGPE 1| Ri:=R2:=20E9;
¢eo0es LDPP, 2853 034000 73.68
¢eas1 DDUP, NOP P04620 02.80
#2002 STD DB 084 161664 _ 04.03
0603 STD DB ggeo Mnemonics gy pao Time 44,03
66067006 [£0004]1 FOR 1:=¢ UNTIL J DO /
N [eooesa| [ZERO, NOP | ’/,7L6256GQJ [a1.40]
Instruction 860065 STOR DB 068 Instruction gs51¢28@ g2.63
Address ¢rose LRA DB 860 (Oc) 171000 31.92
eo0e7 LDl .001 621001 ¢1.05
Fea10 LOAD DB @81 ¢a1001 32.28
03008668 5811 1 ACI):=0%13
ean] TBA P+ 0682 250002 28.00
gEe12 ER P+ 2¢O 140000 33.50
#3615 LDI @82 621802 21.25
BOG16 MPYM DB 608 111600 28.23
26017 LDX DB 600 13106606 72.28
02620 STOR DB @86,1,X 257006 22.63
eeo21 MTRA P- @02 052480 98.60
¢o0Bo0E0 @@Z22 1 END.
gae22 PCAL., 52 G000 25.00
PRIMARY DB STORAGE=%#¢7; SECONDARY DB STORAGE=%00013
NQ. ERRORS=GE0; NG. WARNINGS=000
PROCESSOR TIME=0:00:00; ELAPSED TIME=0:62:47

Figure 9-4. $CONTROL INNERLIST Output

UNCALLABLE
Makes the outer block entry point uncallable except by code running in privileged mode. If used, this
parameter must be specified at the beginning of the source file.

PRIVILEGED

Makes the code segment containing the outer block privileged. If used, this parameter must be specified
before the first BEGIN. NOTE: Hewlett-Packard cannot be responsible for system integrity when
programs written by users operate in privileged mode.

SUBPROGRAM [(procedure-name[*] [,...,procedure-name[*] 1)
Places the compiler in subprogram mode. If used, this parameter must be specified at the beginning of

the program. If no parameters are specified, all of the procedures in the merged source program are
compiled, but the outer block or main program if present is not compiled.

If procedure parameters appear, only those procedures specified are compiled. All others are skipped.
In addition, procedure-names which are followed by an asterisk (*) are compiled with LIST, CODE,
and MAP options on. Those without an * are compiled but not listed. The asterisk mechanism is
overridden by explicit CONTROL commands specifying LIST, ADR, etc.

The default mode for compilation is program mode.

Even in subprogram mode, global declarations and OPTION FORWARD and OPTION EXTERNAL
procedure declarations must be included in the source file, if they are to be referenced by the
procedures being compiled. The compiler includes these items in its symbol table, but does not allocate

9-11

any space. All INTERNAL procedures and secondary entry points should be declared OPTION
FORWARD.

Compiler commands are recognized at any point in the source file. For segmented programs, the
segmentation scheme should be preserved in the subprogram mode. The compiler gives procedures the
last segment name declared and links each procedure to all other procedures in the same USL file
which have the same segment name, even those resulting from a previous compilation. The compiler
also automatically CEASEs any existing procedures in the file with the same procedure-name as the
one currently being compiled, except for INTERNAL procedures. See the MPE Segmenter Subsystem
Reference Manual for a discussion of CEASE.

EXAMPLES:

$CONTROL SUBPROGRAM
$CONTROL SUBPROGRAM(PROC1,PROC2%)

The default parameters of $CONTROL are:

LIST

WARN

NOMAP

ERRORS= 100

NOCODE

SEGMENT=SEG

MAIN=OB’

program mode

ADR off

INNERLIST off

LINES= 60 (except for terminals)
USL file not initialized
CALLABLE, non-privileged outer block.

The following $CONTROL command requests unrestricted access to the listfile, listing of all source
text, symbol table information, and object code, suppression of warning messages but not of error
messages. By default, the maximum number of lines per printed page is limited to 60, the maximum
number of errors allowed is 100, the uslifile is not initialized to empty status, and SPL is in program
mode.

$CONTROL LIST,SOURCE,MAP,CODE,NOWARN

The following $CONTROL command illustrates the default values for the command parameters. It
produces the same effect as if no $CONTROL command were entered:

$CONTROL LIST,SOURCE,WARN,NOMAP,NOCODE,LINES= 60,ERRORS= 100

9-3. $IF COMMAND (CONDITIONAL COMPILATION)

Generally, when you submit a program to the compiler, you want the entire program compiled.
However, occasionally, you may only want to have a portion of the program compiled. You can request
such conditional compilation by delimiting the source code to be compiled (or omitted) with a series of
$IF compiler commands. These $IF commands, interrogate any of ten switches, X0 through X9,
inclusive. You can set these switches by using the $SET command described in paragraph 9-4. When
the condition specified in the $IF command is true, all source records are compiled until the next $IF
command is encountered which is false. When the condition specified is false, all source records are
omitted until a $IF command which is true is executed. However, $EDIT, $PAGE, and $TITLE
commands are never ignored.

9-12

s
o "“3?;53
Ao
i inm?, e
;

ss <
i) ww“"” o

Fluy
G xm“wm
ngus(x e

;g i R
.

=
i ww ' s
;

;ﬁﬁmmm o
%%‘mm;::iss ”“ s
1!!! A miwxr i
? e w!‘ix cx&;;mx o
.

u dv* iy A
5 Gl

0 <
Wi -

“5 b
i

‘;km%%gﬁ
e

i 5
i
L e
o
i

B

i
i
L

w;x

5 wng
- ;;zaw

e g

2,» “‘wi’}
%x o e

L‘x‘xm; .
o]
o

(i E‘
“2 siii
A i

x
o

it

.

G
e
it

I

T
i et

i
i »M

e

i n?g

i

: 5"2

N
e

mv
i .

i
o o
B

.

i
s
e i W 5
sl ‘“2?&3 e
s ‘mm
S
o g jm ‘ xx»‘“
g,', “Lim o
e

e
o
e wxx«:x?w”
e
dut

i

s

i

AR
i e o
i

W

S
e
4 z;‘m o
i

:

i

i

"‘mx%wé‘wggyww
i "“;

st e

sssaxss;xm

5:;
Sl

i E
-
i i
o
xi

S

‘. J

L
i
i &

5

.

o
e '
i

i

.
e
f};&;
‘;’;}:i&
i

i
s

i
i
o

i
ie
5681
it
::::gzz,g
W!i’

ﬁ%

s .
g e
i

a

wx
o

o

i
il
i

e
LAl

s
R i
i

e
i
- ﬁ%ssm

.
xml

- > wwﬁ“fé

o ”Zﬁfi?i i
.
i

i
- mxxm&xm"ﬂ
i

Lo
i sl

e mms
i

. -
G
e u‘im‘

}oﬂ
-

e

;wxm»““f“ 3 i

S
mm)dmx;

i
ki
e
G
L
- Vjﬂ e

o
)
Gy
et

.
e

e
i

mm;
B

o 5?5”_

S L ,

s

“;gf“w ﬁmm;
L

- .

e o

e

: 5@

i

.
.
i ’s b

:
;
i

.

e

.

;:;:xwmtxc!'ﬂ

.

i
o wx

i

i
i
v

N
o “st i
mxxx\nm

o
e

S
e

:;mﬁ i
i

il

- ’wmsmn
e

Sanie

e
“:s;:,;‘i -
e e

. M
d umm

»;,}@)é;m .
i
b

i
) fmmi
i e '11 "

.

- x.mssm ok «r
g,;s,msm ;«(m‘“?‘l
B

o iy

D

e
e
i

"
;
0

‘¢

)
»?Gm
)

i
v .

e <i§'
i nzw

P
i «%sj:’

LA
Gaiod
i‘ ‘,‘Sl

ki
=
,,mmw o o
e
r@ S’

xxk’x ?}

it

nen

S
S .

w

ﬂ

Mxmh? e
i

i

. t?‘l/,, e

\ o
,M

- i
i ,ii o mew;
P “?’;gi‘i} i iduwﬂ“
e e

i ,mx .
I
mw

i

specifies which switch is to be tested. It is any digit between 0 and 9 inclusive.

Spaces are not ailowed between the X and the digit n.

A $IF command can appear anywhere in the source text. The appearance of a $IF command always
terminates the influence of any preceding $IF command. When a $IF command is entered without a
parameter, it has the same effect as an $IF command whose condition is true. That is, the text
following the command is compiled and any previous $IF command is cancelled.

The source text is listed regardless of whether or not it is compiled if the $CONTROL command LIST
and SOURCE options are in effect.

The textfile-masterfile merging operation and transmission of merged/edited text to the newfile are not
affected by $IF commands. Merging and editing are described in the discussion of the $EDIT com-

mand.

An example illustrating the use of the $IF command is presented together with the $SET command

discussion below.

9-4. $SET COMMAND (SOFTWARE SWITCHES FOR CONDITIONAL
COMPILATION)

When the compiler is first called, all ten switches (X0-X9) are turned off. You can turn them on and off
again with the $SET command.

e

i ;«x
o

o
*‘x WA
S

m@,: i

3 »;»Iww ‘}

o
o i
o

xx@,

e
- ‘,

s
e

i
e
e

i i

R

i 1&

o
i Ij L
i

,1:“ i

:“'QN

e ‘««
i ey

%

e Y
ww N

:zggz,w

i

i

s St

i

s

X”n
P e
:

e
Sl

i
G
(.

L’x;m &

;;;‘,,@ i

e

T

e
e
s

i

s e

5 ‘:x"m

s o
Wi Ha

S

i -
o T

B
A m 3
ik

el 0

e
b

;

o
s
w S*» bt

e gt
i
N

i

¢

i

.
£

R

S
s

Gl B ‘,i ¥

. §e
i a W i ‘I,’T(

i

E:ﬁ: i
i

R

e
e

-
;,@ sl G
‘22;?;;&»
4

SR
u
s

o .
.

. :
R
i T i

where

n

indicates which switch is to be set. It can be any digit between 0 and 9 inclusive.

A $SET command can appear anywhere in the source text. If a $SET command is encountered which
does not have a parameter list, all ten switches are turned off.

In the following source text, switches X4 and X5 are set on and interrogated with the results indicated

by the comments:

$SET X4=0N, X5=0N

$IF X5=0N
(SOURCE BLOCK 1)

$IF X5=OFF
$
(SOURCE BLOCK 2)

$IF

(SOURCE BLOCK 3)

<<SET SWITCHES X4 AND X5 ON>>

<<REQUESTS COMPILATION OF SOURCE BLOCK 1>>

<<REQUESTS THAT SOURCE BLOCK 2 BE IGNORED>> &
<<BY CANCELLING PREVIOUS $IF COMMAND>>

<<CANCELS PREVIOUS $IF COMMAND SO THAT>>&
<<SOURCE BLOCK 3 IS COMPILED>>

9-5. $TITLE COMMAND (PAGE TITLE IN STANDARD LISTING)

On each page of output listed during compilation, a standard heading appears. Positions 29 through
132 of this heading are reserved for a title, usually describing the page content, optionally specified

with the $TITLE command.

9-14

o
L
S
i p % 4
e i A i 4
S g S T s e
i igeys Al ity
o i i
i L e | o
o
i ; !

S

Lo L
i e e
i e SR
i

L

“
Wohw

o

mi

-

e
o
e . i
Bl i i)

T

5

i
i)

T

‘i
;
)
i
5
g e e o e o
B A
Cameae e
) b axx5;ﬂ;‘;;;x;xu{é‘;g;gzzmxg,g‘;t«wmms,s?z;fw
D "“‘*ms;s‘”“"‘;"‘%uﬁfxmjj‘*’* *;v;zm ﬂ& i

: .

L .
o ;
"‘““i!m“‘ n”r’ﬁ&?;‘,‘ﬁs;;ss. Lt
4 © R C
- J A’p i dvl

w ;.m Rﬁm VL

i e S

‘x

- Ui
iy e

Bt -‘,,‘gfiimxqu
g R

It

s

i

ki
i i
: 8ss S e S
o ND %“‘ R
il) ;
"‘f%;smxi‘éﬁ;‘;g{ g ’”" g Nkl

i A Lk
e B Hhalg i s
ﬁ i s e e

i a8 ity i Rt 1
S e e

S
.
.

s
o

-

o
i
il

=
.

- s

Each string parameter is a character string bounded by quotation marks that is combined with any
other strings specified to form the title. In forming the title, the strings are stripped of their delimiting
quotation marks and they are then concatenated left-to-right. The entire parameter list can specify up
to 104 characters, including spaces within the strings but excluding delimiters and spaces between the
strings. If the title contains fewer than 104 characters, the unused portion is filled to the right with
spaces. If no string parameters are present in the $TITLE command, or if no $TITLE command or
$PAGE command with a title specification is entered, the title portion of the heading is blank. When a
new $TITLE command is encountered, it supersedes any previously specified title from that point on.

When a $TITLE command is interpreted and the NOLIST parameter of the $CONTROL command is
in effect, title specification or replacement occurs even when the $TITLE command appears within the
range of an $IF command whose relation is evaluated as false.

9-6. $PAGE COMMAND (PAGE TITLE AND EJECTION)

You can specify a program title (as with the $TITLE command) together with page ejection by entering
the $PAGE command. This allows varied listing formats. For example, individual sections of the
program can be listed starting on a new page, and each section can have its own descriptive title.

A

5

-

.

-

-

it

T

0

0
|
s e -
: | i
el mi’,ﬁé
~gmm§§i§%§§;§§m ﬁwﬁs?i’ﬁg”‘j‘ K e
e e L
e [Mo
i e e
e e e
< i g RSy L
Hgn e . R G
Mo oG
T 2!:3%,;:" e iR o

e
ns

i T e e
b s g i S b e g i
A S B B e
L e Uiy T
o A b g
Sl Skl LN A b O e el A8
o e L i o
L e DAY A -
L e AR DIEL AR e o . e Feaai e
S D b BT e (e . . e . i
e Y A X . i
L GE S VE : . ‘
L o i gl 10 Al 8)
L e S R R L v R it 7 |
i i 1,,3};«;,n,,,k,mm%,;‘muzh R S i 3 ,,;meui“ o
; s iy SRR TY T ARV i
~$ “AND UPDAT! ATﬁ X
ot e R ol v TR T I ST g e A G
e rm ke e SEs T e s 0 e
LN SR s e e s G R e e G e i
s PR R g e e g St e i i e e S i

Each string parameter has the same format, meaning, result, and constraints as in the $TITLE
command. If no parameter is specified in the $PAGE command, the previous title, if any, remains in
effect.

9-15

If the LIST parameter of the $CONTROL command is in effect when a $PAGE command is encoun-
tered, the following steps take place:

1. A page eject is generated.

2. The standard page heading including the new title, if one is specified, is printed followed by two
blank lines.

If a new title is not specified, the standard heading with the old title is printed followed by two blank
lines.

If the LIST parameter is not in effect, the new title replaces any previous title, but no printing or page
ejecting occurs. The new title appears when LIST is put into effect.

The $PAGE command itself is never listed.

9-7. $EDIT COMMAND (SOURCE TEXT MERGING AND EDITING)

You can request the following merging and editing operations:

® Merge corrections or additional source text on fextfile with an existing source program and
commands on masterfile to produce a new source program and commands. This new input is
compiled and optionally copied to newfile, which can be saved for recycling through an MPE :FILE
command.

® Check source-record sequence numbers for ascending order.
¢ Omit sections of the old source program during merging.
® Re-number the sequence fields of the records in the new, merged source program.

The editing done by the compiler is limited to linear source text modification. Extensive or more
sophisticated editing is possible with the HP 3000 text editor, EDIT/3000.

9-8. MERGING

You can specify merging simply by using actual file names for the textfile, masterfile, and (optionally)
newfile parameters of the MPE :SPL command when the compiler is called. A sample merging
operation is shown below; however, for a complete description of the :SPL command see paragraph
10-11.

To specify merging of a textfile TFILE with a masterfile MFILE, you could enter the following :SPL
command:

:SPL TFILE,, , MFILE,NFILE

The merged source text is copied to the newfile NFILE, with the object code and listing output written
to the default files SNEWPASS and $STDLIST respectively.

9-16

Prior to merging, the records in both textfile and masterfile must be arranged in ascending order
according to the value of the sequence field on any record, or the sequence fields must be blank. The
order of sequencing is based on the ASCII Collating Sequence as shown in Appendix A. There are no
restrictions regarding blank sequence fields; the sequence fields of some or all of the records in either
the textfile or masterfile, or both files, can be blank, and such records can appear anywhere in either
file.

The merging operation is also based on ascending order of sequence fields according to the ASCII
Collating Sequence. During merging, the sequence fields of the records in both files are checked for
ascending order. If their order is improper, the offending records are skipped during merging and
appropriate diagnostic messages are sent to the listfile. During each comparison step in merging, one
record is read from each file and these records are compared with one of three results:

1. If the values of the sequence fields of the masterfile and the textfile are equal, then the textfile
record is compiled and, optionally, passed to the newfile; the masterfile record is ignored; and one
more record is read from each file for the next comparison.

2. Ifthe value of the sequence field of the masterfile record is less than that of the textfile record, the
masterfile record is compiled and, optionally, passed to the newfile; the textfile record is retained for
comparison with the next masterfile record; and the next masterfile record is read.

3. [Ifthe value of the sequence field of the textfile record is less than that of the masterfile record, the
textfile record is compiled and, optionally, passed to the newfile; the masterfile record is retained for
comparison with the next textfile record; and the next textfile record is read.

During merging, a record with a blank sequence field is assumed to have the same sequence field as
that of the last record with a non-blank sequence field read from the same file, or as a null sequence
field, if no record with a non-blank sequence field has yet been encountered in the file. Thus, a group of
one or more records with blank sequence fields residing on the masterfile are never replaced by records
from the textfile; they can only be deleted through use of the $EDIT command as explained below.

Records from the masterfile that are replaced during merging and thus neither compiled nor sent to
the newfile are not listed during compilation.

When an end-of-file condition is encountered on either the textfile or the masterfile, merging termi-
nates, except for the continuing influence of an unterminated VOID parameter in an $EDIT command,
as discussed later. At this point, the subsequent records on the remaining file are checked for proper
sequence, compiled, and, optionally, passed to the newfile. However, masterfile records within the
range of a VOID parameter are neither compiled nor sent to the newfile.

The sequence field values of records transmitted to the newfile are not normally changed by the
merging operation. However, you can request the assignment of new sequence characters by using the
$EDIT command.

9-9. CHECKING SEQUENCE FIELDS

The presence of a masterfile during compilation implicitly requests the checking of source records for
proper sequence. Thus, when you specify both a textfile and a masterfile as input files for the compiler,
or when you specify a masterfile alone, sequence-checking is done on both files. But when you specify a
textfile as the only input file, sequence checking is not performed. Therefore, when you want to have

9-17

your input sequence-checked without merging two input files, you can read the input from either the
textfile or the masterfile and use $NULL for the other file. For example,

:SPL SOURCE,,$NULL
9-10. EDITING

Editing operations during merging consist of omitting sections of the old source program residing on
the masterfile and/or renumbering the sequence fields of the new, merged source program residing on
the newfile. Both of these operations are requested through the $EDIT command.

where

parameter
specifies an option of the $EDIT command. The parameter is one of the following: VOID=sequence-
value, SEQNUM=sequence-number, NOSEQ, or INC=incnumber.

The parameters are discussed individually below. The parameters can be specified in any order.

VOID=sequence-value

Requests the compiler to bypass during merging all records on the masterfile whose sequence fields
contain a value less than or equal to the sequence-value, plus any subsequent records with blank
sequence fields. This parameter remains in effect until a masterfile record with a sequence field value
higher than the sequence-value is encountered. The VOID parameter is initially disabled when the
compiler is invoked. The sequence-value is either a legal sequence number of from one to eight digits or
a character string. If the sequence-value is less than eight characters, SPL left-fills with ASCII zeros
and sequence character strings with spaces. NOTE: $EDIT VOID in $INCLUDE files must reference
lines in the INCLUDEJ file only.

SEQNUM-=sequence-number
Requests re-numbering of the merged source records on the newfile, beginning with the value specified
by the sequence-number. This value replaces the sequence-number of the next record sent to the
newfile. The sequence-number of each succeeding record is incremented according to the value
specified by the INC parameter or its default as described below. If the SEQNUM= sequence-number
parameter is present but a newfile does not exist, the re-numbering request is ignored. If this
" parameter is present and the newfile exists, the re-numbering request remains in effect until an
$EDIT command with the NOSEQ parameter is encountered. When the merged output is listed,
records actually transmitted to the newfile appear with blank sequence fields. The re-sequencing
request is initially disabled when the compiler is called. The sequence-number is a legal sequence-
number of from one to eight digits. If less than eight digits, the SPL compiler left-fills with ASCII
Zeros.

9-18

NOSEQ

Suspend re-numbering of merged records on the newfile; the current sequence numbers are retained. If
neither SEQNUM nor NOSEQ are specified, NOSEQ takes effect by default until superseded by
SEQNUM.

INC=incnumber

Sets the increment by which records sent to the newfile are renumbered if SEQNUM is in effect. The
increment is specified by incnumber, which is a value ranging from 1 through 99999999. Notice,
however, that very large increments are of limited value since they may cause the eight-digit
sequence-number to overflow. Re-numbering only occurs if SEQNUM is specified or the last parameter
is not overridden by a NOSEQ parameter, and a newfile exists. If SEQNUM is specified but INC is not,
the sequence-number is incremented by the default value of 1000 for each succeeding record. This
default value applies until an INC parameter specifying a new value is encountered.

$EDIT commands are normally input from the textfile. You can input them from the masterfile, but
this procedure is not recommended since any $EDIT command containing a VOID parameter on the
masterfile could void its own continuation records. $EDIT commands themselves are never sent to the
newfile; thus, the $$EDIT... form of the command, while permitted, is redundant.

While sequence fields are allowed, and usually necessary, on records containing $EDIT commands,
continuation records for such commands should have blank sequence fields.

During merging, a group of one or more masterfile records with blank sequence fields are never
replaced by lines from the textfile; they can only be deleted by an $EDIT command with a
VOID=sequence-value parameter at least as great as the last non-blank sequence field preceding the
group. In this case, the entire group of masterfile records with blank sequence number fields is deleted.

Since voided records are never passed to the uslfile or newfile, their sequence is never checked, and
they never generate an out-of-sequence diagnostic message.

A VOID parameter does not affect records in the fextfile.

Any masterfile record replaced by a textfile record is treated as if voided, except that following records
with blank sequence fields are not also voided. If a replaced record would have been out-of-sequence,
the textfile record that replaces it produces an out-of-sequence diagnostic message.

In general, whenever a record sent to the newfile has a non-blank sequence field lower in value than
that of the last record with a non-blank sequence field, a diagnostic message is printed.

For example, suppose you want to merge text input from the standard input device (default for textfile
is $STDIN) with an old program on the file OLDPROG, creating new source input on the file
NEWPROG and you want to re-number the merged source records on NEWPROG beginning with the
value 50, incrementing the sequence number of each subsequent record by 10. After logging on, you
would enter:

:SPL ,,,OLDPROG,NEWPROG

$EDIT SEQNUM=50,INC= 10

9-19

(New text or corrections to be merged with old program.)

9-11. $SPLIT/$SNOSPLIT COMMANDS

The $SPLIT and $NOSPLIT commands are intended for privileged users in split-stack mode to delimit
an area of code to be checked for split-stack errors (see section 8-1). These commands perform the same
function as OPTION SPLIT. However, OPTION SPLIT is effective for an entire procedure, while
$NOSPLIT can be used to reset $SPLIT. (Please see OPTION SPLIT, 7-13A.)

9-12. SCOPYRIGHT COMMAND

You can specify copyright information which is transmitted to the USL and program files by using the
$COPYRIGHT command.

Each string parameter-is a character string bounded by quotation marks that is combined with any
other strings specified to form the copyright information copied to the USL and program files. The

$COPYRIGHT command must precede the outer block BEGIN. The maximum number of characters is
510.

9-13. CROSS REFERENCE LISTING

To obtain a cross reference listing of the identifiers used in an SPL program, run the CROSSREF
program’ Use file equations for the formal designators LIST and TEXT for the list file and text file
respectively. Figure 9-5 shows a sample CROSSREF output. The listing shows, for each identifier, the
sequence number of each record in the source program in which the identifier occurs.

*The CROSSREF program is available through the HP 3000 Contributed Library package offered by HP
Computer Systems Division. Contact your local HP Sales Office for more information.

9-20

sFILE LIST=$STDLIST
tFILE TEXT=SPLEX
sPUN CRCSSREF.PURB.SYS
S.P.L. CROSS REFERENCE TABLE--- AUG 9, 1974 VERSION

SPLEX«PUB.GNOMON
MON, JAN 26, 1976, 3:26 PM

NUMBER OF CARD IMAGES=9. NUMBER OF SYMBOLS=5. NUMBER OF REFEREMCES=7.

A (ARRAY)
Goaesges CCen800e

1 CINTEGER),
6Hp03008 CCEOTRRE GC00EG00 DeBCERO0

J C(INTEGER)
2eBe3600 0VLTT7C00

Rl (REAL)
BreeaAGen @7eB6209

R2 (REAL)
POVGLG0E O7006€C0C

Figure 9-5. Cross Reference Listing

9-14. $INCLUDE COMMAND
The $INCLUDE command permits inclusion of text from another file into the SPL source file.
The form of the $INCLUDE command is:
$INCLUDE filename;
EXAMPLE:
$INCLUDE Myfile;
where
filename
is the fully qualified name of the file to be included. The Included file may contain other SINCLUDEsSs to

a maximum of 10. INCLUDE files are treated as unnumbered files; $EDIT VOID in Included files must
reference lines in the INCLUDEJ file only.

921

MPE COMMANDS

X

10-1. MPE COMMANDS

Communication with the MPE Operating System is initiated through commands. Commands are
requests issuesd to MPE to perform various functions external to an SPL source program. For
example, commands are used to initiate and terminate batch jobs and interactive sessions, compile and
execute source programs, call various MPE subsystems, and obtain job/session status information.
Commands can be entered through any standard input file such as a card reader file or a terminal file.
Commands which you will use most often with SPL programs are summarized in table 10-1. A

complete description of all MPE commands is in the MPE Commands Reference Manual..

Table 10-1. MPE Commands

COMMAND FUNCTION

JOB Initiates a batch job

‘HELLO Initiates an interactive session

:FILE Specifies characteristics of a file

:BUILD Creates a new file

:PURGE Deletes a file from the system

:CONTINUE Disregards batch job error condition

:SPL Compiles an SPL source program

:SPLPREP Compiles and prepares an SPL source program
SPLGO Compiles, prepares, and executes an SPL source program
‘PREP Prepares a compiled program

:PREPRUN Prepares and executes a compiled program
:RUN Executes a prepared program

.EOD Signifies the end of data

:EOJ Terminates a job

:BYE Terminates a session

In general, the form of of an MPE command is:

:command [parameter-list]

In interactive mode, the colon is prompted by MPE; however, in batch mode, you must provide the

colon in column 1 of the command record.

10-1

The parameter-list can contain zero, one, or more parameters that specify files, values, and options for
the command. The end of each parameter in a list is signified by a delimiter. A delimiter is a character
that separates one item from another. Delimiters consist of commas, semicolons, equal signs, or other
punctuation marks.

A space must separate the command from the parameter-list; however, the command must im-
mediately follow the colon without any intervening spaces.

The meanings of parameters in some commands are determined by their positions in the parameter-
list. For example, in an :SPL command:

:SPL textfile,uslfile,listfile,masterfile,newfile

the parameters are positional and their positions in the list designate their meanings. The omission of
an optional positional parameter from a parameter-list is signified by adjacent delimiters, as shown
below:

:SPL textfile, listfile

When parameters are omitted from the end of a list, no adjacent delimiters are required as shown in
the example by the omission of masterfile and newfile.

10-2. SPECIFYING FILES FOR PROGRAMS

Both the SPL compiler and the MPE Operating System read input from and write output to files
handled through the MPE file facility. For example, the compiler reads source code from a textfile,
writes object code to an object file (uslfile), produces listings to a listfile, and performs editing and
merging operations using an old masterfile for input and a newfile for output. Each file has a formal
file designator. You are responsible for equating actual file designators to these formal file designators
in one of three ways.

1. By naming the files as positional parameters in the MPE commands to compile, prepare, and
execute.

2. By omitting optional parameters from the MPE compilation, preparation, or execution command,
thus allowing default file designators to be in effect.

3. By using MPE :FILE commands to equate the formal file designators to the actual file designators.
If you use this method, you must call the compiler with the MPE :RUN command using a PARM=
parameter signifying which files are present, as described later. This method can only be used for
compilation and not for preparation or execution.

You can also use MPE :FILE commands to equate the formal file designators for your execution-time
files to actual file designators. See the MPE Commands Reference Manual for a complete description of

mTY ™

the :FILE command.

10-2

10-3. SPECIFYING FILES AS COMMAND PARAMETERS

You can name the following types of files as parameters in a compilation, preparation, or execution
command:

System Defined Files
User Pre-defined Files
New Files

Old Files

10-4. SYSTEM-DEFINED FILES. System-defined file designators indicate those files that
MPE uniquely identifies as standard input/output files for a job/session. These files are shown in table
10-2.

10-5. USER PRE-DEFINED FILES. A user pre-defined file is any file that was previously
defined or redefined in a :FILE command. In other words, it is a back-reference to that :FILE
command. In compilation, preparation, or execution commands, the actual file designator of this type
of file is the formal file designator preceded by an asterisk to indicate that it was previously defined.
For example,

:FILE S= MYTEXT

:FILE LP;DEV=LP
:SPL *8,,*LP

Table 10-2. System-Defined Files

ACTUAL FILE
DESIGNATOR DEVICE/FILE REFERENCED

$STDIN A filename indicating the standard job or session input file (from which the job
or session is initiated). For a job, this is typically a card reader; for a session
this typically indicates a terminal. Input data records in the $STDIN file
should not contain a colon in position one, since this indicates the end of the
source input. Use the :EOD command to indicate the physical end of a source
program. (The same command is used to indicate the end of a data file.)

$STDINX Equivalent to $STDIN, except that MPE/3000 command records (those with a
colon in position one) encountered in a data file are read without indicating the
end of data. (However, the commands :JOB, :DATA, :EQJ, and :EOD are
exceptions that always indicate the end of data and are never read as data.)

$STDLIST A filename indicating the standard job or session listing file corresponding to
the particular job or_seé_sion input device being used. (For each potential job/
session input device, 4 “user with MPE/3000 System Supervisor capability
designates a corresponding job/session listing device during system con-
figuration.) The job or session listing device is customarily a printer for a batch
job and a terminal for a session.

SNULL The name of a non-existent “ghost” file that is always treated as an empty
file. When referenced as an input file by a program, that program receives only
an end of data indication upon first access. When referenced as an output
file, the associated write request is accepted by MPE/3000 but no physical
output is actually performed. Thus, $NULL can be used to discard unneeded
output from an executing program.

10-3

10-6. NEW FILES. New files are files that have not yet been created, and are being created for
the first time by the current batch job or interactive session. New files can have actual file designators
as shown in table 10-3.

Table 10-3. New Files

FORMAL FILE DEFAULT FILE

FILE PURPOSE DESIGNATOR DESIGNATOR
Textfile Contains source program, correction text to be SPLTEXT $STDIN
merged, and/or compiler subsystem
commands.
Listfile Destination of listing output. SPLLIST $STDLIST
Uslfile Destination of object program code. SPLUSL SNEWPASS
Masterfile Old source program to be merged and edited SPLMAST $NULL

with new text input from textfile.

Newfile New source program resulting from (optional) SPLNEW SNULL
merging of textfile and masterfile.

Progfile Destination of executable object program. None SNEWPASS

10-7. OLD FILES. Old files are existing files in the system. They may be named by the
designators shown in table 10-4.

Table 10-4. Old Files

ACTUAL FILE

DESIGNATOR FILE REFERENCED

$OLDPASS The name of the temporary file last closed as $NEWPASS.

filereference Any other old file to which you have access. It may be a job/session

temporary file created in the current or a previous program in the current job/
session, or a permanent file saved by any program in any job/session. The
format is the same as filereference, noted in table 10-5.

10-8. INPUT/OUTPUT SETS. All of the preceding actual file designators can be classified as

those used as input parameters (input set) and those used as output parameters (output set). These sets
are defined as follows:

INPUT SET

$STDIN The job/session input file.

$STDINX The job/session input file with commands allowed.

$OLDPASS The last file passed.

$NULL A constantly-empty file that will produce an end-of-file condition
whenever it is read.

*formaldesignator A back-reference to a previously defined file.

filereference A file name, and perhaps account and group names and a
lockword.

10-4

OUTPUT SET
$STDLIST
$OLDPASS
SNEWPASS
$NULL
*formaldesignator
filereference

The job/session listing file.

The last file passed.

A new temporary file to be passed.

A constantly-empty file.

A back-reference to a previcusly defined file.

A file name, and perhaps account and group names and a
lockword.

10-9. SPECIFYING FILES BY DEFAULT

When you omit an optional file parameter from a compilation, preparation, or execution command,
MPE assigns one of the members of the input or output sets by default. The file designator assigned
depends on the specific command, parameter, and operating mode as noted later in this section. The

default file designators are shown in table 10-5.

Table 10-5. SPL Compiler File Designators

ACTUAL FILE
DESIGNATOR

FILE REFERENCED

SNEWPASS

A temporary disc file that can be passed automatically to any succeeding
MPE/3000 command within the same job or session which references it by the
filename $OLDPASS. (Passing is explained in the compilation, preparation,
and execution command examples.) Only one such file can exist in the job or
session at any one time. (When SNEWPASS is closed, its name is changed to
$OLDPASS automatically, and any previous file named $OLDPASS is deleted.)

filereference

Any other new file to which you have access. Unless you specify otherwise,
this is a temporary file, residing on disc, that is destroyed upon termination of
the program. If no :FILE command specifies otherwise, any such SPL files
are closed as job/session temporary files, saved until the end of the job/
session, and then are purged. !f closed as permanent files (by specifying
SAVE in a :FILE command), they are saved until you purge them. Typically,
this format consists of a file name containing up to eight alphanumeric char-
acters, beginning with a letter. In addition, other elements (such as a group
name, account name, or lockword) can be specified. The complete rules
governing the filereference format are contained in the MPE Commands
Reference Manual.

10-10. COMPILING,

PROGRAMS

PREPARING, AND EXECUTING SPL SOURCE

The commands used for compilation, preparation, and execution of SPL source programs are:

:SPL
or
:RUN SPL.PUB.SYS

Compiles a source program.

10-5

:SPLPREP Compiles and prepares a source program.

:SPLGO Compiles, prepares, and executes a source program.

:PREP Prepares source programs which have been compiled into a
USL file.

:RUN Executes programs that have been compiled and prepared

(and therefore exist on program files).

:PREPRUN Prepares and executes programs compiled into USL files.

10-11. :SPL COMMAND

The :SPL command compiles an SPL source program.

where

textfile
is the name of an input file from which the source program is to be read. If omitted, the program will be
read from the standard input file $STDIN. Do not use the designator SPLTEXT for this parameter.

uslfile
is the name of the USL (User Subprogram Library) file on which the object program is to be written. If

this parameter is included in an :SPL command, it must indicate a file previously created in one of two
ways:

1. By saving a USL file with a :SAVE command from a previous compilation.

2. By creating a new file with a :BUILD command and designating it as a USL file with a file code of
1024 or USL. For example,

:BUILD MYUSL;CODE= 1024 or :BUILD MYUSL;CODE=USL

If the uslfile is omitted, the default file §OLDPASS is used. Do not use the designator SPLUSL for this
parameter.

listfile
is the name of the file to which the program listing is to be sent. If omitted, the default file $STDLIST

is assigned. Typically $STDLIST is the terminal in a session or the line printer in batch. Do not use the
designator, SPLLIST for this parameter.

10-6

masterfile
is the name of a file to be optionally merged with textfile and written onto a file named newfile. If
masterfile is omitted, no merging takes place. Do not use the designator SPLMAST for this parameter.

newfile

is the name of a file on which the re-sequenced records from the textfile and the masterfile are
optionally merged. When rewfile is omitted, no newfile is created. Do not use the designator SPLNEW
for this parameter.

All parameters of an :SPL command are optional. However, direct interactive input is not recom-
mended since it is impossible to correct an error after pressing the carriage return key. To create
source files, use the HP 3000 Text Editor (See the EDIT/3000 Reference Manual).

quoted string
is a list of compiler commands enclosed in single or double quotes in the format described in section 9-1.

INFO = parameter

The INFO keyword on the SPL, SPLPREP, and SPLGO commands allows compiler commands to be
added to a program without changing the source. These commands logically precede any other source.
On the listing, these commands have a sequence field of INFO= to indicate their source as illustrated in
the example below. These compiler commands read from the quoted string are not sent to newfile.

:SPL EXAMPLE; INFO="$CONTROL MAPSCONTROL INNERLIST"

PAGE 0001 HP32100A.08.02 [4W] (C) HEWLETT-PACKARD COMPANY 1982

IN FO= 00000 O SCONTROL MAP
IN FO= 00000 O SCONTROL INNERLIST
1 00000 O BEGIN
2 00000 1 INTEGER I;
3 00000 1
4 00000 1 I := 99;
00000 LDI ,143 021143 01.05
00001 STOR DB 000 051000 03.15
5 00002 1 END.
00002 PCAL, 052 000000 14.90
IDENTIFIER CLASS TYPE ADDRESS
I SIMP. VAR. INTEGER DB+000
TERMINATE® PROCEDURE
PRIMARY DB STORAGE=%001; SECONDARY DB STORAGE=%00000
NO. ERRORS=0000; NO. WARNINGS=0000
PROCESSOR TIME=0:00:01; ELAPSED TIME=0:00:05

END OF PROGRAM

10-7

10-12. RUN SPL.PUB.SYS COMMAND

An alternative way to call the SPL compiler is by using the :RUN command. Before using the :RUN
command, you must use file equations for the files normally specified on the :SPL command. The
formal file designators are:

SPLTEXT (textfile)
SPLLIST (listfile)
SPLUSL (uslfile)
SPLMAST (masterfile)
SPLNEW (newfile)
Table 10-6. PARM Values
PARAMETERNUM FILES PRESENT
0 None
1 textfile
2 listfile
3 listfile, textfile
4 uslfile
5 uslfile, textfile
6 uslfile, listfile
7 uslfile, listfile, textfile
8 masterfile
9 masterfile, textfile
10 masterfile, listfile
11 masterfile, listfile, textfile
12 masterfile, uslfile
13 masterfile, uslfile, textfile
14 masterfile, uslfile, listfile
15 masterfile, uslfile, listfile, textfile
16 newfile
17 newfile, textfile
18 newfile, listfile
19 newfile, listfile, textfile
20 newfile, uslfile
21 newfile, uslfile, textfile
22 newfile, uslfile, listfile
23 newfile, uslfile, listfile, textfile
24 newfile, masterfile
25 newfile, masterfile, textfile
26 newfile, masterfile, listfile
27 newfile, masterfile, listfile, textfile
28 newfile, masterfile, uslfile
29 newfile, masterfile, uslfile, textfile
30 newfile, masterfile, uslfile, listfile
31 newfile, masterfile, uslfile, listfile, textfile

10-8

Thus, to compile from the file MYSOURCE and send the listing to the line printer, you would use

:FILE SPLTEXT=MYSOURCE
:FILE SPLLIST;DEV=LP

before using the :RUN command.
Additionally, you must specify a PARM=parameternum parameter on the :RUN command to indicate
which files are present unless the default values are used. The value is between 0 and 31 as shown in

table 10-6. Basically, the low order five bits in parameternum represent the five files which can be
specified as shown below:

| 11 | 12 | 13 14 | 15 |

newfile masterfile uslfile listfile textfile

For example, to invoke the compiler with the textfile and listfile present, you would use the command:

:RUN SPL.PUB.SYS;PARM=3;INFO="$CONTROL NOLIST”

10-13. ENTERING PROGRAM SOURCE INTERACTIVELY
If you do not specify a textfile when compiling in session mode, you must enter the program source
from the terminal. You are prompted for each source line with a greater-than sign (>). Each program

unit (procedure, subroutine, or main body) is compiled as it is completed. To exit from the compiler,
enter :EOD in response to the prompt character >.

10-14. :SPLPREP COMMAND

The :SPLPREP command compiles and prepares an SPL source program.

L
‘ : 3@;“‘“@
i i e
&xwm & e s
i il)

i # i L . e i

s i Ly i 9‘; e A i m“:y

i xxg;’xﬂ o bl .

S

L
>

:’7&@“ i
w!‘l . ‘” i wﬂ@m
e g o Lit e 1o e e
& “Lv«"‘;f ok % i ‘w 0 ,"i»,“ e St ’fw At “'w”l Wit iy
e e . e s mw
e i e L e G e e et
f’ e wmwy i “’m!»,m s S e xw g
& y xx‘ «) i i it " B K P v« e
w\ i w* o ,«.u; i s m«, i D R it i i wx .‘ i i g, mu‘ & i i
4 t e w,., 5,, - el (,L,»st; ﬂg * | m i
w ‘,,(, Bl i s i ,x ,.m m
i ,,ﬁx«‘u‘gu w‘,dm e : 5
oo ,;ﬂ, i va,h«,yx},nv; i i ; j‘;‘,n
i “W«,xm e e ¢
2 i % e e
& g i " | i ‘UV i n? e x g p
5 i . i bt i ,m.,,, i i e i
fe el L s e L Do e
sxr,pm; G ~“‘;5"" ,x; J) Y i ,m‘,,L.xx"d@\,(,k‘»‘ S ‘ss:w,;, b 'é<~, ’;,‘fvf“ﬁ i zw,ﬁwmqfftaz o
L G L A O & g e “‘,N i i ¢ e
L "' a4 "’x i ’w» Wi w i "”;xx 3 ‘I, T ,‘w"“,?""’ G w"x » ,w i3 **'w NN S i - e
L,PA,L F« 2 P D% . a0 (:, e o ’X
: SR «m e i“(,,, m’, ») «m o 3,‘ i o My-»w ;t”,w" x,;:‘, ,uwu‘w\m e “ i w ¢

10-9

where

textfile, listfile, masterfile, newfile, quoted string
have the same meanings as described under the :SPL command.

progfile
is the name of the file on which the prepared program is written. If this parameter is included, it must
reference a file created in one of two ways:
1. By using the :BUILD command with a filecode of 1029 or PROG. For example,
:BUILD PROGF;CODE=1029
or
:BUILD PROGF;CODE=PROG
2. By specifying a non-existent file in the parameter, in which case a temporary file of the correct size
and type will be created. To save the file for future jobs/sessions, you must use the :SAVE

command after preparation.

If the progfile parameter is omitted, the default file SNEWPASS is assigned. This file is renamed
$OLDPASS upon completion.

All :SPLPREP parameters are optional.

10-15. :SPLGO COMMAND

The :SPLGO command compiles, prepares, and executes an SPL source program.

s

where

textfile, listfile, masterfile, newfile, quoted string
all have the same meaning as described under the :SPL command.

All :SPLGO parameters are optional.

10-10

10-16. :PREP COMMAND

PREP command prepares source programs that have been compiled into a USL file

Sl o
22% . .
R B

o

)
!§I F& iy
by S g
i i i : s
“mmmu i wwwm i e “i
i L - >
e ¥ F) e : ’
o V1L £ e = 4
; chL Y > “ S
S o
sw;w “‘ it m,, -’! W
i gm M,ﬁ:@ggh& .
s

i o ;
i : o « e
i i it ¢ I}l% 5 i&!l ki
i ﬂmw ;M@mw

W§
o
: i S
i ‘Q mw. mﬂt ﬁ% ‘ s u
- i 3 o - | , o
o = SEL E?z&%; odis
Sy R 5; > = i 3 e e
,;. i G e < ; i
;;‘) e L e e ,“Eﬁ't:s
o 5

i

o

«mi?”,}*‘" .
«imﬂ ﬂ@x' o i aires

o : - o . -

- - - e i

i e " hi

- w“‘ S m«m

7
i “p

e

wmﬁ

i
g

L

i
mﬁwmwm’“

5
.
o “““%haﬁﬂ
i
xwm@
o ;
4 o
i

-
-

o
-
i

e

§§“‘
e
e

-

i m¢m

.
e
.

-

s o
-

.

e
.

L
£
.
S
i
i

s
.

s
o

.

uslfile
is the name of the USL file onto which the program file has been compiled.

progfile
is the name of the program file onto which the prepared program is to be written. This file must be

created in one of two ways:

1. By creating a new file with the :BUILD command using a filecode of 1029 or PROG, as follows

:BUILD PROGF;CODE=1029

or

:BUILD PROGF;CODE=PROG

2. By specifying a non-existent file in this parameter, in which case a temporary file of the correct
size and type will be created. To save this file for future jobs/sessions, you must use the :SAVE

command.

Both the uslfile and the progfile parameters are required in a :PREP command
ZERODB
is a request to set the initially defined DL-DB and DB-Q (initial) areas of the stack to zero.

PMAP
is a request to list certain information about the prepared program.

segsize
specifies a maximum size for the stack area in words. The segmenter normally establishes this value,

but you can use this value to override the Segmenter’s estimate.

10-11

stacksize

When a process is created by the system, the user is allocated MAXDATA words of virtual memory,
but only stacksize words in main memory. The main memory space is expanded as required. This
parameter allows you to override the Segmenter estimate.

dlsize

the DL-DB area size to be initially assigned to the stack. If not specified, MPE will estimate the value
for each program.

caplist
the capability-class attributes associated with your program. The default values are BA (batch access)

and IA (interactive access).

filename
the name of a relocatable procedure library to be searched to satisfy external references during
program preparation. If not specified, no library is searched.

10-17. :PREPRUN COMMAND

The :PREPRUN command prepares and executes programs that have been compiled into USL files.

where

uslfile
is the name of the USL file on which the program has been compiled.

entry-point
specifies the entry-point where execution is to begin. If not specified, execution begins at the primary
entry-point.

NOPRIV

is a request to place a privileged program in non-privileged mode. If not specified, a privileged program
executes in privileged mode.

10-12

PMAP
is a request to list certain information about the prepared program.

DEBUG
is a request to set a breakpoint on the first executable instruction of the program for entering debug
commands. Refer to the MPE DEBUG/ STACK DUMP Reference Manual.

LMAP
is a request to list certain information about the loaded program.

ZERODB
is a request to set the initially defined DL-DB and DB-Q (initial) areas to zero.

segsize
specifies the maximum stack area (Z— DL) size permitted, in words. This value is normally set by the
Segmenter, but you can use this parameter to override the Segmenter estimate.

parameternum
is a value that can be passed to your program as a general parameter for control or other purposes. If
not specified, a zero is passed.

stacksize

When a process is created by the system, the user is allocated MAXDATA words of virtual memory but
only stacksize words in main memory. The main memory is expanded as required. This parameter
allows you to override the Segmenter estimate. If not specified, the stacksize is determined by the
Segmenter for each individual program.

dlsize
is the size of the DL-DB area to be initially assigned to the stack. If not specified, it is established by
MPE.

filename
is the name of a relocatable procedure library to be searched to satisfy external references during
program preparation. If not specified, no library is searched.

library

specifies the order in which segmented procedure libraries are to be searched to satisfy external
references during segmentation. The library can be either G (Group first), P (Public group first), or S
(System first). If not specified, the System library is searched first.

caplist
specifies the capability-class attributes associated with your program. If not specified, BA (Batch
Access) and TA (Interactive Access) are used.

NOCB

Requests that the file system not use stack segment (PCBX) for its control blocks, even if sufficient
space is available. This permits you to expand your stack (via the DLSIZE or ZSIZE intrinsics) to the
maximum possible limit at a later time, but causes the File Management System to operate more
slowly for this program.

NOTE

You should only use this parameter if the program absolutely
requires the largest stack possible.

1013

10-18. :RUN COMMAND

The :RUN command executes a program that has been compiled and prepared into a program file.

where

progfile
is the name of the file which contains the compiled and prepared program to be executed.

The other parameters have the same meaning as shown with the :PREPRUN command.

10-19. USING EXTERNAL PROCEDURE LIBRARIES

Compiled SPL programs are stored in files called User Subprogram Libraries (USL’s) that reside on
disc. In any particular USL, each compiled program unit exists as a Relocatable Binary Module
(RBM). To prepare a program, and any program unit it references, for execution, the MPE Segmenter
selects the appropriate RBM’s from the USL and binds them into linked segments written on a
program file. For more information on the Segmenter, USL’s and RBM’s, refer to the MPE Segmenter
Subsystem Reference Manual.

When you prepare and run programs in SPL, it is possible to reference external procedures in
procedure libraries. You can build, modify, and maintain two types of procedure libraries within your
log-on group and account: Relocatable Libraries (RL’s) and Segmented Libraries (SL’s).

10-20. RELOCATABLE LIBRARIES

A Relocatable Library (RL) is a specially formatted file that is searched at program preparation time
to satisfy references to external procedures called by your program. Within such libraries, these
procedures are placed in a single segment and linked to your program. Within such libraries, these
procedures exist in RBM form (as they would on a USL). When a program is prepared, these
procedures are placed in a single segment and linked to your program in the resulting program file.

For example, to specify that an RL named RLPROC be searched during preparation of a program from
the USL file USL1 to the program file PROG1, you would enter the following :PREP command:

10-14

10-21. CREATING AND MAINTAINING RELOCATABLE LIBRARIES. To create and
maintain relocatable libraries, you must access the Segmenter by entering the MPE :SEGMENTER
command.

listfile

is an ASCII file from the output set (the formal designator is SEGLIST) to which is written any listable
output generated by the Segmenter commands. The designator SEGLIST should not be used as the
actual file designator. If the listfile is omitted, the standard job/session list device ($STDLIST) is
assigned by default.

If you are in an interactive session, the Segmenter prompts you with a dash (-). Once the Segmenter is
accessed, the following commands are used to create and maintain an RL:

-BUILDRL
Creates a permanent, formatted RL file.

-USL
References the USL file from which the procedure is to be obtained.

-RL
Identifies an existing RL.

-ADDRL
Adds a procedure to the currently identified RL.

-PURGERL
Deletes a procedure from an RL.

-LISTRL
Lists information concerning the currently identified RL.

e

i
4 . " : aan

s i @ i s . e
g g g TR g i
o - ey of

-’
e i
L e L

3
e
W

o

where

filereference
is the file name of the new RL, optionally including group and account identifiers.

records
is the total maximum capacity of the file, specified in terms of 128-word, binary logical records.

10-15

extents ~

is the total number of disc extents that can be dynamically allocated to the file as logical records are
written to it. The size of each extent is determined by the records parameter value divided by the
extents parameter value. The extents value must be between 1 and 16 inclusive.

where

filereference
is the name and optional group and account names, of the USL file to be manipulated.

where

filereference
is the name, plus optional group and account names, of the RL to be modified.

where

name
is the name of the procedure to be added to the RL. This name is called the primary entry-point of the
RBM containing the procedure.

index
is an integer further identifying the RBM. The index may be used when the currently-managed USL
contains more than one active RBM of the same name. If index is omitted, a value of zero is assigned.

10-16

where

rispec
is either UNIT or ENTRY. UNIT is used to delete the procedure identified by name. ENTRY is used to
delete the entry-point identified by name. If rispec is omitted, ENTRY is used.

name
if rispec is UNIT, name is the name of the procedure to be deleted. If rispec is ENTRY, name is the
name of the entry-point to be deleted.

Refer to the MPE Segmenter Subsystem Reference Manual for further discussions of these Segmenter
commands.

10-22. SEGMENTED LIBRARIES

Segmented libraries (SL’s) are specially formatted files that are searched at program run time to
satisfy references to external procedures. These libraries, like program files, contain procedures in
segmented (prepared) form. An individual procedure may exist in a segment containing many other
procedures. When a procedure is referenced, the segment containing it is loaded with your program.
Since the segmentation is not altered when different programs reference procedures in an SL, these
procedures may be shared concurrently by other programs.

To specify that an SL file in your group account be searched, add the keyword parameter LIB=library
in the :RUN command as follows:

:RUN PROGI;LIB=G

10-23. CREATING AND MAINTAINING SEGMENTED LIBRARIES. To create and main-

tain segmented libraries, you must first access the Segmenter by entering the MPE :SEGMENTER
command.

where

listfile

is an ASCII file from the output set (the formal designator is SEGLIST) to which is written any listable
output generated by the Segmenter commands. The designator SEGLIST should not be used as the
actual file designator. If the listfile is omitted, the standard job/session list device ($STDLIST) is
assigned by default.

10-17

If in an interactive session, you are prompted with a dash (-) for Segmenter commands. Once the
Segmenter is accessed, the following commands are used to create and maintain an SL:

-BUILDSL
Creates a permanent, formatted SL file.

-SL
Identifies an existing SL file.

-ADDSL
Adds a procedure to the SL file currently being managed.

-PURGESL
Purges an entry-point from a segment in an SL, or the entire segment from the SL.

-LISTSL
Lists the procedures in the currently managed SL file.

In addition, the -USL and -LISTUSL Segmenter commands can be used as discussed under “Relocata-
ble Libraries” (paragraph 10-20).

where

filereference
is a file whose local name is SL, plus optional group and account names.

NOTE

You can create an SL file with a local name other than SL, but
such a file cannot be searched by the :RUN command.

records
is the total maximum file capacity, specified in terms of 128-word binary logical records.

extents

is the total number of disc extents that can be dynamically allocated to the file as logical records are
written to it. The size of each extent is determined by the records parameter value divided by the
extents parameter value. The extents value must be an integer between 1 and 16 inclusive.

10-18

is the name of the SL to be modified, optionally including group and account names.

where
filereference

_.m m.m
= 3
[3} nN
& &=
7] YM
[bG
8 .
=3 3 =
o 5 E=i)
=R e g5 a
e o [}
7 8 =
5 A 1=
< g 3 Z
g 4 2=
8 g Wr
o B 53
o 9 o =
o = o B
3 g 3
< QO o <
2 3 S5
o B o <
= +
2 B B g
= g 8 .
S > 3
P 8 2 -
§ 3 - RS
. e
o g5 e 2 <
> %% ° 2 2
£ g ° 2 3 o
+ o .8 s et
o ~ Y..I. -
= o < B g 15
g = > g
3 =3 £
3 o M (ST oy
« = [} 0
© = [o
R %0 o 13
g3 Z < -
Q -2 m
ot “.mm S g g
g 8 5 B <3 B
ama < O Sd% =
2o Q
& mm E* u m
2 o
& 2 g D > &
=] = Z R%R e}
i = =g B o, E b
-~ ° aM Z —Z o
g <9 MM g
< Mav.\uu s B ©
- S o %mm_w =]
e yo %83 o BZZE g9
& mt =1 & .meE& mt
ES 2.2 o B H B S2m & =92

see the MPE Segmenter Subsystem Reference

10-1

ions of these Segmenter commands

pt

Tl

For further desc

Manual

ASCIl CHARACTER SET

APPENDIX

A

BYTE POSITION BYTE POSITION

CHAR Left Right Dec. CHAR Left Right Dec.
NUL 000000 000000 0 @ 040000 000100 64
SOH 000400 000001 1 A 040400 000101 65
STX 001000 000002 2 B 041000 000102 66
ETX 001400 000003 3 c 041400 000103 67
EOT 002000 000004 4 D 042000 000104 68
ENQ 002400 000005 5 E 042400 000105 69
ACK 003000 000006 6 F 043000 000106 70
BEL 003400 000007 7 G 043400 000107 71
BS 004000 000010 8 H 044000 000110 72
HT 004400 000011 9 [044400 000111 73
LF 005000 000012 10 J 045000 000112 74
vT 005400 000013 11 K 045400 000113 75
FF 006000 000014 12 L 046000 000114 76
CR 006400 000015 13 M 046400 000115 77
o) 007000 000016 14 N 047000 000116 78
sl 007400 000017 15 o) 047400 000117 79
DLE 010000 000020 16 P 050000 000120 80
DC1 010400 000021 17 Q 050400 000121 81
DC2 011000 000022 18 R 051000 000122 82
DC3 011400 000023 19 s 051400 000123 83
DC4 012000 000024 20 T 052000 000124 84
NAK 012400 000025 21 u 052400 000125 85
SYN 013000 000026 22 v 053000 000126 86
ETB 013400 000027 23 w 053400 000127 87
CAN 014000 000030 24 X 054000 000130 88
EM 014400 000031 25 Y 054400 000131 89
SuB 015000 000032 26 z 055000 000132 90
ESC 015400 000033 27 { 055400 000133 91
FS 016000 000034 28 \ 056000 000134 92
GS 016400 000035 29] 056400 000135 93
RS 017000 000036 30 - 057000 000136 94
us 017400 000037 31 - 057400 000137 95
SPACE 020000 000040 32 : 060000 000140 9
! 020400 000041 33 a 060400 000141 97
"’ 021000 000042 34 b 061000 000142 98
021400 000043 35 c 061400 000143 99
$ 022000 000044 36 d 062000 000144 100
% 022400 000045 37 e 062400 000145 101
& 023000 000046 38 f 063000 000146 102
! 023400 000047 39 g 063400 000147 103
{ 024000 000050 40 h 064000 000150 104
) 024400 000051 a1 [064400 000151 105
y 025000 000052 a2 j 065000 000152 106
+ 025400 000053 43 k 065400 000153 107
026000 000054 a4 ! 066000 000154 108

- 026400 000055 as m 066400 000155 109

. 027000 000056 a6 n 067000 000156 110

/ 027400 000057 a7) 067400 000157 111

0 030000 000060 a8 P 070000 000160 112

1 030400 000061 a9 q 070400 000161 113
2 031000 600062 50 : 071000 000162 114
3 031400 000063 51 s 071400 000163 115
4 032000 000064 52 t 072000 000164 116

5 032400 000065 53 u 072400 000165 117
6 033000 000066 54 v 073000 000166 118
7 033400 000067 55 w 073400 000167 119
8 034000 000070 56 x 074000 000170 120
9 034400 000071 57 v 074400 000171 121
: 035000 000072 58 z 075000 000172 122
; 035400 000073 59 { 075400 000173 123
< 036000 000074 60 ! 076000 000174 124
= 036400 000075 61] 076400 000175 125
> 037000 000076 62 ~ 077000 000176 126
? 037400 000077 63 DEL 077400 000177 127

RESERVED WORDS

The following symbols have special meaning in SPL/3000 and thus, cannot be used as identifiers:

ABSOLUTE
ALPHA
AND
ARRAY
ASSEMBLE
BEGIN
BYTE
CARRY
CASE

CAT
CHECK
COMMENT
DABZ
DATASEG
DDEL
DEFINE
DEL

DELB

DO
DOUBLE
DXBZ

ELSE

END
ENTRY
EQUATE
EXTERNAL
FALSE
FIXR

FIXT

FOR
FORWARD
GLOBAL
GO

GOTO
IABZ

IF
INTEGER
INTERNAL
INTERRUPT
INTRINSIC
IXBZ
LABEL

LAND
LOGICAL
LONG

LOR

MOD

MODD
MOVE
MOVEX
NOCARRY
NOT
NOVERFLOW
NUMERIC
OF

OPTION

OR
OVERFLOW
OWN
POINTER
PRIVILEGED
PROCEDURE
PUSH

REAL
RETURN
SCAN

SET
SPECIAL
SPLIT
STEP
SUBROUTINE
SWITCH
THEN

TO

TOS

TRUE
UNCALLABLE
UNTIL
VALUE
VARIABLE
VIRTUAL
WHILE
WITH

XOR

APPENDIX

C

BUILDING AN INTRINSIC FILE

The program BUILDINT is used to build or change intrinsic disc files. The program uses formal
designators INTDECL and OUT for input and list output files respectively. The default files are
$STDIN and $STDLIST. The intrinsic data file is opened as SPLINTR.

The command to execute the program is
:RUN BUILDINT.PUB.SYS

The input data consists of SPL procedure head declarations (OPTION EXTERNAL is required) and
optional commands.

Without commands, the procedure head declarations are added to the intrinsic file.

Commands have the following purposes:
$PURGE Removes all entries from the intrinsic file.

$REMOVE Removes all entries which follow this command, until a $BUILD.
Input has the same format as for adding entries.

$BUILD Adds all subsequent input entries to the intrinsic file. $BUILD is
required only if SREMOVE is used.

Any input data which is not a procedure head terminates input. At this point, the program prints a
formatted list of all intrinsics and terminates.

For example,

:PURGE MYFILE

:BUILD MYFILE

:FILE SPLINTR=MYFILE

:RUN BUILDINT.PUB.SYS

INTEGER PROCEDURE M(A,B,C); VALUE A; INTEGER A,B;LOGICAL C;

OPTION EXTERNAL; PROCEDURE COMP(N,M’); VALUE N,M’; DOUBLE N;REAL M’;
OPTION EXTERNAL;

PROCEDURE BYT(L,M,N,0O); LABEL L; PROCEDURE M; BYTE ARRAY N;

LOGICAL POINTER O; OPTION EXTERNAL;

:EOD

See the next page for the formatted output for this file.

C1

Q

PAGE @002 HEWLETT=PACKARD SPL INTRINSIC BUILDER
TYPE OPTIONS PARAMETERS
N NONE B9le293 LEVEL OF CHECKING COLUMN 1 COLUMN 2 COLUMN 3
L LOGICAL E EXTERNAL v VALUE T SEE TYPE S SIMPLE VARIABLE
1 INTEGER v VARIABLE R REFERENCE A ARRAY
B BYTE I INTERRUPT P POINTER
D DOUBLE U UNCALLABLE T PROCEDURE
R REAL L LABEL
E EXTENDED
NAME TYPE OPTIONS #PAR PARAMETERS
1 2 3 4) 6 7 8 9 10 11 12 13 14 15 16 17 18 19
BYT N (3 4 RNL RNT RBA RLP
ComMP N OE 4 VDS VRS
M I []3 3 VIS RIS RLS

NO. ERRORS=000

Figure C-1. BUILDINT Output

29

Table C-1. BUILDINT Error Messages

MESSAGE

MEANING

ACTION

DECLARED TWICE

EXPECTS A SEMICOLON

EXPECTS IDENTIFIER

EXPECTS NUMBER

FORWARD OPTION IS
ILLEGAL

ILLEGAL SYMBOL

INTERRUPT PROCEDURE
MUST NOT HAVE PARAMETER

MISSING SPECIFICATION

NUMERIC SYMBOL NOT

ALLOWED

READ ERROR

SPECIFICATION DOES NOT
CORRESPOND

SUBROUTINES NOT
ALLOWED
TOO MANY PARAMETERS

TOO MANY OR ILLEGAL
ATTRIBUTES

VALUE SPECIFICATION
DOES NOT CORRESPOND

The identifier in question is not
unique.

Only a comma or a semicolon
is legal at this point.

An identifier is the only legal
symbol at this point.

The CHECK option has been
specified but no legal check
level follows.

The FORWARD option
has been specified in a context
where it is illegal.

A left bracket, asterisk, or slash
has been encountered, none of
which are acceptable.

An interrupt procedure has
been declared with a param-
eter; a parameter is illegal in
this context.

A formal parameter has not
been given a type specification.

A fraction has been encoun-
tered which is not acceptable.

An error occurred while reading
from the input file.

There is no formal parameter
with the name used in this
specification.

Subroutines are illegal in the
intrinsic file.

There are more than 31 formal
parameters.

A specification for an identifier
was made with more than one
type or more than one class.

A value specification exists
for a non-existent formal
parameter.

Correct to unigue
identifier.

Rewrite the intrinsic
without subroutines.

Reduce the number of
formal parameters.

Either include the formal
parameter or remove
the value specification.

MPE INTRINSICS

APPENDIX

Table D-1. Summary of MPE Intrinsics

INTRINSIC PURPOSE CAPABILITY REQUIRED
NAME
ACCEPT Accepts (and completes) a request received by the Standard
preceding GET intrinsic call. (Used only with DS/3000.)
ACTIVATE Activates a process. Process Handling
ADJUSTUSLF Adjusts directory space in a USL file. Standard
ALTDSEG Alters the size of an extra data segment. Data Segment Management
ARITRAP Enables or disables internal interrupt signals from all Standard
hardware arithmetic traps.
ASCII Converts a numbér from binary to ASCIl code. Standard
BINARY Converts a number from ASCI! to binary code Standard
CALENDAR Returns the calendar date. Standard
CAUSEBREAK Requests a session break. Standard
CLEANUSL Deletes inactive entries from USL file. Standard
CLOCK Returns the actual time. Standard
CLOSELOG Closes access to the logging facility. LG Capability
COMMAND Executes an MPE command programmatically. Standard
CREATE Creates a process. Process Handling
CREATE Provides ability to assign $STDIN and $STDLIST Process Handling
PROCESS to any file.
CTRANSLATE Converts a string of characters from EBCDIC to ASCII Standard
or from ASCII to EBCDIC.
DASCII Converts a value from double-word binary to ASCI| code. Standard
DATELINE Returns date and time information. Standard
DBINARY Converts a number from ASCI| code to a double- Standard
word binary value.
DEBUG Calls the DEBUG facility. Standard

Table D-1 Summary of MPE Intrinsics (Continued)

INTRINSIC PURPOSE CAPABILITY REQUIRED
NAME
DLSIZE Changes size of DL to DB area. Standard
DMOVIN Copies block from data segment to stack. Data Segment Management
DMOVOUT Copies block from stack to data segment. Data Segment Management
EXPANDUSLF Changes length of a USL file. Standard
FATHER Requests Process Identification Number (PIN of Process Handling
father process.
FCARD Drives the HP 7260A Optical Mark Reader. Standard
FCHECK Requests details about file input/output errors. Standard
FCLOSE Closes a file. Standard
FCONTROL Performs control operations on a file or terminal device. Standard
FDELETE Deactivates a R10 record. Standard
FDEVICE Adds control directives to a spooled device file. Standard
CONTROL
FERRMSG Returns message corresponding to FCHECK error Standard
number.
FFILEINFO Provides access to file information. Standard
FGETINFO Requests access and status information about a file. Standard
FINDJCW Searches Job Control Word (JCW) table for specified Standard
JCW. R
FLOCK Dynamically locks a file. Standard
FMTCALEN Formats caiendar date. Standard
DAR
FMTCLOCK Formats time of day. Standard
FMTDATE Formats calendar date and time of day. Standard
FOPEN Opens a file. Standard
FPOINT Resets the logical record pointer for a sequential disc Standard
file.
FREAD Reads a logical record from a sequential file {on any Standard
device) to the user’s data stack.
FREAD Reads a logical record beginning at a point prior to Standard
BACKWARD the current record printer.
FREADDIR Reads a logical record from a direct access file to the Standard

user’s data stack.

D-2

Table D-1 Summary of MPE Intrinsics (Continued)

'NLE‘:\':ES'C PURPOSE CAPABILITY REQUIRED
FREADLABEL Reads a user file label. Standard
FREADSEEK Prepares, in advance, for reading from a direct-access Standard
file.
FREEDSEG Releases an extra data segment. Data Segment Management
FREELOCRIN Frees all local Resource Identification Numbers (RIN’s) Standard
from allocation to a job.
FRELATE Determines if a file pair is interactive or duplicative. Standard
FRENAME Renames a disc file. Standard
FSETMODE Activates or de-activates file-access modes. Standard
FSPACE Spaces forward or backward on a file. Standard
FUNLOCK Dynamically unlocks a file. Standard
FUPDATE Updates a logical record residing in a disc file. Standard
FWRITE Writes a logical record from the user’s stack to a sequen- Standard
tial file (on any device).
FWRITEDIR Writes a logical record from the user’s stack to a direct- Standard
access disc file.
FWRITELABEL Writes a user file label. Standard
GENMESSAGE Accesses MPE message system. Standard
GET Receives the next request from a remote master program. Standard
(Used only with DS/3000.)
GETDSEG Creates an extra data segment. Data Segment Management
GETJCW Fetches contents of system job control word (JCW). Standard
GETLOCRIN Acquires local RIN's. Standard
GETORIGIN Determines source of process activation call. Process Handling
GETPRIORITY Changes the priority of a process. Process Handling

GETPRIVMODE

Dynamically enters privileged mode.

Privileged Mode

GETPROCID

Requests PIN of a son process.

Process Handling

Table D-1 Summary of MPE Intrinsics (Continued)

INTRINSIC
NAME

PURPOSE

CAPABILITY REQUIRED

GETPROCINFO

Requests status information about a father or son
process.

Process Handling

GETUSERMODE Dynamically returns to non-privileged mode. Privileged Mode
INITUSLF Initializes a USL file to the empty state. Standard
IODONTWAIT Initiates completion operations for an 1/0 request. Privileged Mode
IOWAIT Initiates completion operations for an 1/0 request. Privileged Mode
KILL Deletes a process. Pocess Handling
LOADPROC Dynamically loads a library procedure. Standard
LOCKGLORIN Locks a global RIN. Standard
LOCKLOCRIN Locks a focal RIN. Standard
LOCRINOWNER Identifies process locking a local RIN. Standard
MAIL Tests mailbox status. Process Handling
MYCOMMAND Parses (delineates and defines parameters) for user- Standard
supplied command image.
OPENLOG Provides access to a logging facility. LG Capability
PAUSE Suspends calling process for a specified number of Standard
seconds.
PCHECK Returns an integer code specifying the completion status Standard
of the most recently executed DS/3000. (Used only with
DS/3000.)
PCLOSE Terminates program-to-program communication with a Standard
remote slave program. (Used only with DS/3000.)
PCONTROL Exchanges tag fields with a remote slave program. (Used Standard
only with DS/3000.)
POPEN Initiates program-to-program communication with a Standard
remote slave program. (Used only with DS/3000.)
PREAD Requests a block of data from a remote slave program. Standard
(Used only with DS/3000.)
PRINT Prints character string on job/session list device. Standard
PRINTFILEINFO Prints file information display. Standard

D-4

Table D-1 Summary of MPE Intrinsics (Continued)

INLI;:\:I:IC PURPOSE CAPABILITY REQUIRED
PRINTOP Prints a character string on the Operator’s Console. Standard
PRINTOPREPLY Prints a character string on the Operator’s Console and Standard

solicits a reply.
PROCTIME Returns a process’ accumulated central processor time. Standard
PTAPE Accepts input from paper tapes which do not contain Standard
X-OFF control characters.
PUTJCW Puts value of a given JCW in JCW tabie. Standard
PWRITE Sends a block of data to a remote slave program. Standard
QUIT Aborts a process. Standard
QUITPROG Aborts the user process structure. Standard
READ Reads an ASCII string from the job/session input device Standard
($STDIN).
READX Reads an ASCII string from the job/session input device Standard
($STDINX).
RECEIVEMAIL Receives mail from another process. Process Handling
REJECT Rejects the request received by the preceding GET Standard
intrinsic call. (Used only with DS/3000.)
RESETCONTROL Resets terminal to accept CONTROL Y signal. Standard
RESETDUMP Disables the abort stack analysis facility. Standard
SEARCH Searches an array for a specified entry or name. Standard
SENDMAIL Sends mail to another process. Process Handling
SETDUMP Enables the abort stack analysis facility. Standard
SETJCW Sets the value of the system job control word (JCW). Standard
STACKDUMP Dumps selected parts of stack to file. Standard
SUSPEND Suspends a process. Process Handling
SWITCHDB Switches DB register pointer. Privileged Mode
TERMINATE Terminates a process. Standard
TIMER Returns job or session timer bit count. Standard
UNLOADPROC Dynamically unloads a library procedure.
UNLOADGLORIN Unlocks a global RIN. Standard

D-5

Table D-1 Summary of MPE Intrinsics (Continued)

IN;'::G'ES“: PURPOSE CAPABILITY REQUIRED
UNLOCKLOCRIN Unlocks a local RIN. Standard
WHO Returns user attributes. Standard
WRITELOG Writes a record to a logging file. LG Capability
XARITRAP Arms or disarms the software arithmetic trap. Standard
XCONTRAP Arms or disarms the CONTROL-Y trap. Standard
XLIBTRAP Arms or disarms the library trap. Standard
XSYSTRAP Arms or disarms the system trap. Standard
ZSIZE Changes size of Z to DB area. Standard

D-6

COMPILER ERROR MESSAGES

APPENDIX

E

Table E-1. SPL Compiler Error Messages

MESSAGE

MEANING

ACTION

ARITHMETIC RIGHT SHIFT
EMITTED

Compiler has issued an ASR to
convert a byte address to a
word address.

None, unless word
address is supposed to
be greater than DB+
16383 in which case the
ASR causes an error.

BEGIN END DO NOT MATCH

When END. encountered, there
were more BEGINs than ENDs.

Check your code and
correct.

CASE STATEMENT
OVERFLOW

The number of cases in a CASE
statement exceeds 256.

Check your code;
decrease the number of
cases.

CONVERSION ERROR

An illegal type conversion was
attempted.

Check manual for legal
type conversions; note
that types cannot be
mixed in arithmetic
operations.

DECLARATION NOT
ALLOWED IN SUBROUTINE

A subroutine may not have
declarations.

Check the subroutine
code and move decla-
rations to main program
or procedure.

DECLARATION OUT OF
ORDER

Declarations must be ordered
as: data, procedures, sub-
routines.

Check the order;
correct.

DECLARED TWICE

An identifier has been declared
twice at the same level.

Check declarations;
correct.

DEFINE TOO LARGE

A DEFINE declaration has too
many characters in its de-
scription.

Check declaration,
reduce to 511 charac-
ters excluding extrane-
ous blanks.

DISPLACEMENT OUT OF
RANGE

The displacement is too large
or has the wrong sign for the
addressing mode.

DISPLACEMENT TOO LARGE

The displacement is too
large for the addressing mode.

Displacement varies
with addressing mode:
DB + 255
Q+ 127, Q - 63
S- 63
P+ 255; P~ 255

EXCEEDED MAXIMUM
INCLUDE DEPTH

INCLUDES are nested to a level
greater than 10.

Check your code; decrease
the nesting level of INCLUDEs.

EXPECTS ALPHA

The next symbol must be an
alphabetic character.

Check code; change to
alphabetic character.

EXPECTS ARRAY IDENTIFIER

Only an array identifier is legal
in this context.

Check code; use array
identifier.

E-1

Table E-1. SPL Compiler Error Messages (Continued)

MESSAGE

MEANING

ACTION

EXPECTS ASTERISK

An asterisk is expected in this
context.

Check code; use
asterisk.

EXPECTS BOUNDS

An array declaration of this
type ‘requires bounds.

Check code; enter
bounds.

EXPECTS CONSTANT

A constant is expected in this
context; for example, as a par-
tial word designator.

Check code: correct.

EXPECTS DOLLAR

A'$ command with continuation
symbol is not followed by
image with $ in column 1.

Correct by entering $ at
beginning of continua-
tion line or deleting
continuation symbol,

EXPECTS EQUAL

An equals sign is expected
in this context.

Check code and enter
= where expected.

EXPECTSFILE

Filename expected. but not
found.

Check your code and
correct.

EXPECTS IDENTIFIER
REFERENCE

ldentifier name not found.

Check your code and
correct.

EXPECTS INTEGER VARIABLE

Only as integer variable is
legal in this context

Check code, correct.

EXPECTS LABEL

A label must appear in this
context.

Check code. correct.

EXPECTS OR

OR was expected but not
found.

Check your code and
correct.

EXPECTS OPTION

A $ command has an illegal
command or is followed by an
illegal parameter.

Check command, cor-
rect.

EXPECTS POINTER

Only a pointer is legal in this
context.

Check code, correct.

EXPECTS REFERENCE
PARAMETER

A value parameter is passed to
a procedure that expects a
parameter passed by refer-
ence.

Check parameters and
specifications; correct.

EXPECTS RELATIONAL

A relational operator is ex-
pected at this point.

Check code, correct by
including relational
operator (=,<>,<,<=,
> >=)

EXPECTS RELATIONAL OR
COMMA

Either a comma or a relational
operator is expected in this
context.

Check code, correct
by including comma or
relational operator (=,
<> < <=,>>=) as

appropriate.

E-2

Table E-1. SPL Compiler Error Messages (Continued)

MESSAGE

MEANING

ACTION

EXPECTS SYMBOL

No symbol where a symbol,
such as an identifier, s
expected.

Check code, include
symbol.

EXPECTS UNDEFINED
BOUNDS

An array declaration of this type
requires an asterisk (*).

Check declaration,
include *

EXPECTS VARIABLE

Only a variable is allowed in
this context.

Check code, correct.

FILENAME TOO LONG

Filename is greater than 8
characters.

Check your code and
shorten name.

ILLEGAL ADDRESS MODE

The specified address mode is
not legal in this context

Address mode relative
to DB, Q, S. or PB must
be changed.

ILLEGAL ADDRESS STORE

An attempt has been made to
store into a non-existent
pointer; for example:

@ PTR(1): =0.

Change to (@ PTR:=n or
PTR(1):=n.

ILLEGAL ASSEMBLE
STATEMENT

An error occurred in an
ASSEMBLE statement.

Check the statement:
correct.

ILLEGAL ATTRIBUTE

Attribute inconsistent with
identifier; e.g., LONG LABEL.

Check the specification;
correct.

ILLEGAL BOUNDS
SPECIFICATIONS

The bounds for this array
declaration are invalid.

Check that bounds are
* (@ orinteger constant.

ILLEGAL CLASS

Symbol class (POINTER,
ARRAY, etc.) incorrect in
context.

Check the symbol;
correct the symbol
class.

ILLEGAL CONSTANT

This symbol!l is not a valid
constant.

Check the constant,
enter a valid constant.

ILLEGAL DYNAMIC BOUNDS

The dynamic bounds must be
gither an integer formal param-
eter or a global integer.

Correct as indicated.

ILLEGAL EXTERNAL
VARIABLE

An error occurred in an exter-
nal variable declaration or in its
use.

Check the declaration
and also the procedure
where it is used: correct

ILLEGAL FORMAL
PARAMETER

The attributes specified for this
formal parameter are not
valid.

Check the parameter:
correct.

ILLEGAL GLOBAL EXTERNAL
VARIABLE

An error has occurred in a
global or an external variable
declaration.

Check declarations;
correct.

E-3

Table E-1. SPL Compiler Error Messages (Continued)

MESSAGE

MEANING

ACTION

ILLEGAL IDENTIFIER
REFERENCE

The reference identifier for this
declaration is incorrect.

Check the declaration:
reference identifier
must be declared first.

ILLEGAL INITIALIZATION

The initialization list for this
array is invalid.

Make sure that list con-
tains only numeric
values or strings.

ILLEGAL IF STATEMENT

This IF statement contains an
error.

Check the statement,
correct.

ILLEGAL IN SPLIT-
STACK MODE

An error was detected inside a
WITH statement or with OPTION
SPLIT or $SPLIT.

Check WITH and
OPTION SPLIT in manual.

ILLEGAL ITEM IN
EXPRESSION

The item is either not declared
or is of the wrong class.

Check declarations,
include if necessary,
otherwise correct.

ILLEGAL LEFT PARENTHESIS

A left parenthesis has been
used In a context where it is
illegal.

Remove the paren-
thesis.

ILLEGAL MODE IN THIS
CONTEXT

An address mode (relative to
DB. Q. S. or PB) cannot be
used in this context.

Change to a mode that
is legal in this context.

ILLEGAL OPERATOR

An operator is used that is not
recognized by the compiler

Valid operators are ",
o+ .-.MOD.MODD.
=<, <> <= >=
LAND, LOR, XOR.

ILLEGAL OWN
INITIALIZATION

The initialization list for an OWN
array is invalid.

Check; correct the list
to include only numbers
and strings.

ILLEGAL OWN VARIABLE

An error occurred in an OWN
variable declaration or in its
use.

Check the OWN
variable declaration
and also where it is
used; correct.

ILLEGAL PARAMETER

This parameter contains an
illegal item.

Check the parameter;
correct.

ILLEGAL S-RELATIVE
ADDRESS

The displacement to S is either
positive or less than —63.

Correct the address to
fall within range S-0
through S-63.

EXPECTS WHILE OR UNTIL

The reserved word WHILE or
UNTIL is missing.

Check code, include
WHILE or UNTIL.

EXPECTS @

The compiler expects an @ as
the next symbol in this context.

Check code, include @ .

ERROR IN CATENATE
EXPRESSION

A catenate expression must be
of the form (L:M:N) where L, M,
and N are integer constants.

Check expression and
correct.

E-4

Table E-1. SPL Compiler Error Messages (Continued)

MESSAGE

MEANING

ACTION

ERROR IN PARTIAL WORD
DESIGNATCR

A partial word designator must
be of the form (M:N) where M
and N are integer constants.

Check code; correct
form of partial word
designator.

ERROR IN SHIFT
DESIGNATOR

An illegal mnemonic follows the
&.

Change mnemonic to a
valid shift identifier.

ERROR [N USL FILE

USL file contains a bad entry.
Compilation terminates.

Check source for errors;
correct and try again.

ERROR OVERFLOW

Maximum number of errors has
been generated.

Default maximum = 100
errors; change with
SCONTROL command.

FORWARD PROCEDURE
DECLARATION
INCOMPATIBLE

Forward and actual procedure
declarations do not match.

Check declarations and
correct.

[LLEGAL SEGMENTATION

A SCONTROL SEGMENT card
is within a procedure.

Change the card to
appear outside the
procedure.

ILLEGAL STATEMENT
BEGINNER

A statement cannot begin with
this class; possibly is an un-
declared variable.

Check the class, and if
undeclared variable,
declare it.

ILLEGAL STATEMENT
TERMINATOR

A statement must be termi-
nated by END or a semicolon.

Correct the terminator.

ILLEGAL STRING

A string is expected in this
context but there are no gquote
marks.

Enclose the string in
quotes.

ILLEGAL SYMBOL

Not an ASCII character valid
for SPL.

Check and enter a valid
ASCII character accept-
able to SPL.

ILLEGAL TO STACK
PARAMETER

Parameter must not be loaded
directly to stack in this context
or stack will be out of order.

Correct so that param-
eter is not stacked.

ILLEGAL TRACE CARD

A $TRACE card is either in
the wrong position or contains

an error.

Check the S$TRACE
card and move or cor-
rect as appropriate.

ILLEGAL TRACE
IDENTIFIER

The identifier being traced is of
a class that cannot be traced.

Change class to
SIMPLE VARIABLE,
ARRAY, POINTER,
LABEL, or PROCEDURE.

iLLEGAL TYPE

A type mismatch has occurred
in an arithmetic operation.

Check the types and
change to matching
types.

Table E-1. SPL Compiler Error Messages (Continued)

MESSAGE

MEANING

ACTION

ILLEGAL TYPE TRANSFER

The type of the operand may
not be converted to the type of
the object in SPL.

Check the statement
and correct to avoid
type mismatch.

ILLEGAL USE OF PB BYTE
ARRAY

Byte cannot be loaded from
a PB byte array since the load
byte instruction is not PB-
relative.

Correct code so
attempt is not made to
load byte from PB byte
array.

ILLEGAL VARIABLE

Form of variable is not valid.

Check variable and
insure that it starts with
letter.

ILLEGAL X ON OR OFF

Parameter on $IF command is
invalid; may be XO through X9
= ON or OFF only

Check $IF parameter
and correct.

ILLEGAL X REGISTER
REFERENCE

Either the type or the ciass of the
variable referencing the X
register is illegal.

Change type and/or
class to that of a one-
word variable

INDEX NOT ALLOWED

An attempt was made to index
a simple variable.

Change declaration to
array or remove index.

INITIALIZATION OUT OF
RANGE

An array has been initialized
with a list that is larger than the
array size.

Either change the array
size or decrease the list.

INTEGER OVERFLOW

A constant expression resulted
in an integer overflow

Check constants used
in expressions for a
resulting value greater
than 32767 or less than
-32767

INVALID BRANCH EMITTED

Compiler has emitted a bad
branch in ASSEMBLE state-
ment; probably label out of
range.

Check label range;
change to indirect
branch.

INVALID BYTE INITIALIZATION

The initialization list of a byte
array is incorrect.

Check byte array and
its initialization fist;
correct.

INVALID COMMENT

Comment has been used in an
ilegal context.

Check code; either
move or remove
comment.

INVALID EXPONENT
PARAMETER

An exponent expression con-
tains an error.

Check the expression;
correct,

INVALID NUMBER

Either the field is not numeric
or the number is out of range in
this context.

Check field and range
of number; correct.

INVALID OPERATOR
MNEMONIC

The mnemonic in ASSEMBLE
statement not identifiable.

Check code for invalid
instruction mnemonic:
correct.

E-6

Table E-1. SPL Compiler Error Messages (Continued)

MESSAGE

MEANING

ACTION

INVALID SDEC

Stack decrement (SDEC) field
in statement such as MOVE
or SCAN is out of range.

Check range for this
SDEC constant and
correct.

INVALID SUBSCRIPT

An index must be an integer
expression.

Check expression used
as index; correct.

LABEL IN ASSEMBLE
STATEMENT MUST OCCUR

A label referenced in an
ASSEMBLE statement cannot
be found.

Check statement; either
include label or remove
reference.

LOCAL DECLARATION
OVERFLOW

Too many local declarations;
up to 127 words allowed.

Check and remove
extra declarations.

LOCAL !NITIALIZATION MUST
BE PB

A local array can be initialized
only in PB mode.

Check array declara-
tion; change mode to
PB, or make array
global.

LOGICAL COMPARE
EMITTED

Issued when a logical com-
pare always gives the same
result.

Warning that compare
such as L>=0is always
true, L<O always false
if L is logical variable.

MAY NOT GO TO ENTRY

A GO TO statement may not
transfer to an entry label.

Check GO TO; change
label.

MAY NOT TRACE EXTERNAL
LABEL

Trace can only be made on
label in program unit being
compiled.

Check TRACE; change
label to one in current
program unit.

MAXIMUM REPEAT FACTOR
8191

The largest repeat factor al-
lowed in an initialization list is
8191.

Check initialization list;
lower repeat factor.

MISSING ASSIGNMENT
OPERATOR

An assignment operator must
appear in this context.

Check code; include
assignment operator.

MISSING BEGIN The compiler expects a BEGIN Check code; include
as the next symbol. BEGIN.
MISSING CCF This ASSEMBLE instruction Check code; include

requires a CCF specification.

CCF specification.

MISSING COLON

A colon (:) must appear in this
context.

Check code; include
colon.

MISSING COMMA

A comma (,) is expected in this
context.

Check code; include
comma.

MISSING DO A DO must appear in this Check code; include
context. DO.
MISSING ELSE An ELSE must appear in this Check code; include

context.

ELSE.

E-7

Table E-1. SPL Compiler Error Messages (Continued)

MESSAGE

MEANING

ACTION

MISSING EXPONENT

A valid exponent must follow a
caret (A).

Check code; enter valid
exponent.

MISSING FORMAL
PARAMETER

A specification is made for a
non-existent formal parameter.

Check code; include
formal parameter or
delete specification.

MISSING LEFT PARENTHESIS

A left parenthesis is expected
in this context.

Check code: include
left parenthesis.

MISSING OF

A CASE statement does not
contain the word OF.

Check CASE statement;
include OF.

MISSING RIGHT BRACKET

A right bracket is only accept-
able symbol at this point.

Check code and
include right bracket.

MISSING RIGHT
PARENTHESIS

A right parenthesis is expected
at this point.

Check code; include
right parenthesis.

MISSING SEMICOLON

A semicolon (;) or other sep-
arator is required in this context.

Check code: include
semicolon.

MISSING SLASH

A slash is the only acceptable
symbol at this point.

Check code: include
slash.

MISSING SPECIFICATION

There is no specification for a
formal parameter.

Check code: include
specification for formal
parameter.

MISSING SUBPROGRAM

A procedure specified in a
$CONTROL SUBPROGRAM
command cannot be found.

Check code: correct
name in command or
include procedure.

MISSING THEN A THEN must appear in this Check code: include
context word THEN.
MISSING UNTIL An UNTIL must appear in this Check code; include

context.

word UNTIL.

MULTIPLE FORWARD
DECLARATION

There is more than one forward
declaration for this procedure.

Check declarations;
remove redundant for-
ward declaration.

MULTIPLE SPECIFICATIONS

A formal parameter is specified
more than once.

Check code; remove
extra formal parameter.

MUST BE DB

Only DB-relative addressing is
allowed in this context.

Check address; correct
to DB-relative.

MUST BE DB OR Q

Only DB-relative or Q-relative
addressing allowed in this
context.

Check address; correct
to DB-relative or Q-
relative.

MUST BE DOUBLE OR
LOGICAL

Only a double-word or logical
variable is allowed in this

Check variable; change
to double or logical.

E-8

Table E-i. SPL Compiler Error Messages (Continued)

MESSAGE

MEANING

ACTION

MUST BE INTEGER TYPE

The only valid type for this
construct is integer.

Check code; use
integer.

MUST BE INTEGER, LOGICAL
OR BYTE

A one-word quantity is ex-
pected in this context.

Check code; correct to
use one-word quantity.

MUST BE LOCAL

Action allowed only for local is
being performed on global
variable.

Check code; correct
variable.

MUST BE TYPE BYTE

Symbol must be type byte in
this context.

Check symbol; correct
if illegal or change to
type byte.

MUST BE TYPE LOGICAL

Oniy a logical variable can
appear in a Boolean expression.

Check expression;
change to logical
variable.

MUST BE TYPE PROCEDURE

In this context, procedure must
be typed.

Check code; change to
typed procedure.

MUST BE VALUE FORMAL
PARAMETER

A reference parameter is not
legal in this context.

Check parameter:;
change to formal
parameter.

NESTED PROCEDURE NOT
ALLOWED

A procedure declaration is
within another procedure.

Check code; remove
procedure declaration
for other procedure.

NESTED REPEAT
FACTOR

Repeat factor inside a repeat
factor is not allowed.

Check code.

NOT END OF COMMENT

Two greater-than symbols are
separated by one or more
blanks.

If intended as comment,
remove blanks so sym-
bols are adjacent (>>).

NOT INTRINSIC FILE

A file specified as an intrinsic
file in INTRINSIC statement is
not an intrinsic file.

Check file name;
change to name of in-
trinsic file.

NOT ON INTRINSIC FILE

Procedure referenced in an
INTRINSIC declaration is not on
the intrinsic file.

Check procedure name
and intrinsic file;
change name or in-
ciude intrinsic in file.

OUT OF RANGE BRANCH

An ASSEMBLE statement con-
tains branch that is beyond
range of direct branch.

Check statement;
change range of
branch or wuse in-
direct addressing.

PARAMETER NOT ALLOWED

Interrupt procedure that should
have no parameters has a
parameter.

Check procedure;
remove parameter.

PARAMETER NUMBER
INCOMPATIBLE

A procedure call has an in-
correct number of parameters.

Check procedure;
change number of
parameters accordingly.

E-9

Table E-1. SPL Compiler Error Messages '(Continued)

MESSAGE

MEANING

ACTION

PARAMETER OUT OF RANGE

This parameter exceeds the
maximum allowable displace-
ment for this address mode.

Displacements may be:
DB+ 255, Q+ 127, Q-63,
S—-63, P+255, P—255.

PARAMETER OVERFLOW

There are more than 31 param-
eters in this procedure.

Reduce number of
parameters to 31 or
fewer.

PARTIAL WORD ILLEGAL
HERE

A partial word designator is
not allowed in multiple store.

Break into several store
statements to allow bit
deposit.

PRIMARY DB OVERFLOW

A variable cannot be assigned
with a DB-relative address
greater than 255, or total is
greater than 907 words.

Correct to address
within accepted bounds
possibly by removing
declarations.

PRIMARY Q OVERFLOW

Variable cannot be assigned
with Q-relative address greater
than 127.

Correct assignment to
address within accept-
able bounds.

PROCEDURE TOO LARGE

The number of instructions in
this procedure exceeds the
limit.

Decrease number of in-
structions in procedure
or increase segment
size.

RECURSIVE DEFINE

Invoking this DEFINE statement
would result in infinite loop.

Check text of DEFINE
statement for identifier
being defined.

RESERVED SYMBOL
REDEFINED

Cannot define a constant or
reserved word.

Check definition; omit
reserved word or
symbof.

SDEC TOO LARGE

Stack decrement in an ASSEM-
BLE statement is larger than
largest allowed value.

Check statement;
reduce stack decre-
ment to acceptable
value for context.

SECONDARY DB OVERFLOW

There are too many declara-
tions in the outer block.

Check code, and
reduce the number of
declarations.

SEMICOLON NOT ALLOWED

A semicolon (;) cannot be
used in this context.

Remove semicolon.

SEQUENCE ERROR

Input files contain images that
are out of order.

Check input files;
correct order.

SIZE INCOMPATIBILITY

Parameter passed to a pro-
cedure has wrong number of
words.

Check parameter size
in procedure, and cor-
rect call.

SORT TABLE OVERFLOW

Table used to sort map cutput
is full (over 1162 procedures/
symbols, 1912 globals)

Symbol table map can-
not be produced.

E-10

Table E-1. SPL Compiler Error Messages (Continued)

MESSAGE

MEANING

ACTION

STRING TOO LARGE

This string exceeds 128
characters.

Reduce string size to
acceptable limit.

SYMBOL TABLE ERROR

Some entries in the symbol
table are no longer valid.

Symbol table map can-
not be produced.

SYMBOL TABLE OVERFLOW

The compiler limit for the
number of symbols has been
exceeded.

Reduce number of sym-
bols in program and
recompile.

STACK OVERFLOW MAY BE
IRRECOVERABLE

If stack overflow occurs and Q
and S set in same instruction,
process may terminate

Separate into two in-
structions; e.g., SET (Q),
SET (S), not SET (Q.,S).

SUBPROGRAM TABLE
OVERFLOW

Overflow in table where sub-
program names to be compiled
are stored.

Reduce number or size
of names to total of 252
characters plus 1 extra
for each name.

SUBPROGRAM & USLINIT

This compilation specifies both
subprogram and USLINIT,
resulting in no outer block

Compile an outer block
before preparing the
program file.

TOO MANY USL
HEADERS

Too many procedure calls in-
side code block.

Reduce the number of
procedure calls.

TRACE HEADER TOO LARGE

Too many symbols being
traced resulting in table
overflow

Reduce number of sym-
bols to be traced.

TYPE INCOMPATIBILITY

In arithmetic statement, two
operands of different type are
combined

Change one or both
operands so that they
are the same type
(REAL, LONG, etc.)

TYPE PROCEDURE STORE
OUT OF RANGE

A procedure name can appear
on the left-hand side of a
replacement operator (:=) only
within the scope of the proce-
dure with the same name.

Check procedure
name; correct name or
remove statement.

UNDECLARED IDENTIFIER

An identifier used in a state-
ment has not been declared in
a declaration.

Declare identifier or
change identifier name
to a declared identifier.

USL FILE OVERFLOW

The USL file is full

Build larger USL file;
recompile.

@ NOT ALLOWED

An (@ is not legal in this context.

Remove (@ .

E-11

CALLING SPL FROM
OTHER LANGUAGES || F

There are a number of things to consider when writing SPL procedures that are to be called from other
languages. Not all languages pass parameters in the same way and some have restrictions as to their
ability to call function procedures, OPTION VARIABLE, and so forth. This note summarizes these
restriction for BASIC, COBOL, COBOL II, and FORTRAN.

There are two ways to pass a parameter to a procedure: by REFERENCE and by VALUE. Passing a
parameter by reference means that the 16-bit ADDRESS of the variable is passed on the stack; the
called procedure refers to this parameter via indirect memory reference instructions (LOAD Q-n, I and
STOR Q-n, I). Passing a parameter by value means that the actual contents of the variable (1, 2, or 4
words) are passed on the stack; the called procedure refers to this parameter via direct memory
reference instructions (LOAD Q-n and STOR Q-n). As a result, if the called procedure modifies a
call-by-reference parameter, the caller’s variable is modified; for call-by-value parameters, only the
“temporary” copy in Q-minus storage is changed (the caller’s version retains its old value).

OPTION VARIABLE is a facility that provides the ability to call a procedure with a varying number of
parameters. The called procedure will expect a “bit mask” in Q-4 (and Q-5 if there are more than 16
parameters) with bits set indicating which parameters are present. Parameters are always passed in
the same Q-minus addresses; the Q-minus locations for parameters which are omitted have undefined
values. It is up to the called procedure to examine the bit mask and to access only those parameters
which are passed on any particular call.

A function procedure is one which returns a value in place of its name; it therefore can be called from an
expression and the value that it returns will be used in the expression. This value is stored in the stack
just before (lower address) the parameters to the procedure. It is the responsibility of the caller to
dispose of or use the return value properly. An example of such a procedure is the BINARY intrinsic.

Because the various languages have differing capabilities for dealing with the various aspects of
procedure calls, the SPL coder needs to be aware of what each language does. Below are summarized the
things that need to be considered for each language.

COBOL

— All parameters are passed as WORD addresses (call-by-reference). There is one exception: you can
pass the MPE file number for a file opened with the OPEN verb by passing the FD-name to a
procedure; this is passed as a 16-bit integer by value.

— COBOL has no way of coping with the return value of a function procedure; an extra value will be left
on the stack which will disrupt program execution. Do not call function procedures from COBOL.

— There is no way for COBOL to generate the bit msk required by OPTION VARIABLE procedures, so

these cannot be called either. Since it is impossible to pass a parameter from COBOL by value, you
can’t generate the bit mask yourself.

F1

— The following illustrates how the COBOL data types map to SPL data types:

COMPUTATIONAL
1-4 digits INTEGER
5-9 digits DOUBLE

COMPUTATIONAL-3 SPL has no PACKED DECIMAL capability; you must access this as a
byte array and generate the machine instructions yourself. Note that
COBOL passes a WORD address for this; you will need to use an
equivalenced byte array.

DISPLAY Passed as LOGICAL (array). You will usually want to equivalence a
byte array to the passed parameter and access the data this way.

Note that COBOL has no equivalent of REAL or LONG.

FORTRAN

— FORTRAN passes all parameters by reference unless the parameter is enclosed in backslashes, in
which case it is passed by value. You may use a constant or expression in a call; if it is not enclosed in
backslashes, a temporary cell is created and the address of the cell is passed.

FORTRAN may call function procedures normally (external function).

If you are calling an OPTION VARIABLE procedure, you must calculate the bit mask required and
pass it as a constant by value as the LAST (or last two) parameter(s). See below for form of the bit
mask.
— The following illustrates how FORTRAN data types map to SPL data types:
INTEGER/INTEGER*2 INTEGER
INTEGER*4 DOUBLE
REAL REAL
DOUBLE PRECISION LONG
CHARACTER*n BYTE ARRAY
— When calling an intrinsic, you should name the intrinsic in a SYSTEM INTRINSIC statement. Then

FORTRAN will take care of the OPTION VARIABLE mask, passing of parameters by reference or
value, and so on.

BASIC

— BASIC passes all parameters by reference. There is no way to override this; if you pass a constant or
expression, a temporary cell is created and the address of the cell is passed.

— BASIC, like COBOL, can’t handle the return value from a function procedure. Likewise, it has no
ability to generate an OPTION VARIABLE bit mask. Because all parameters are call-by-reference,
you cannot generate a proper bit mask.

— BASIC passes a parameter type descriptor just in front of (lower memory address) the first parameter.
The called procedure may use this or ignore it — see the BASIC Interpreter reference manual for

details. This descriptor does not interfere with the normai addresses of the parameters.

— The following illustrates how BASIC data types map to SPL data types:

REAL/undeclared REAL

LONG LONG
INTEGER - INTEGER
String (x$) BYTE ARRAY

Please keep in mind that the default constant in BASIC is type-REAL. To pass an integer, you must
either store the value into an integer variable and pass the variable or use the following construct:

DEF INTEGER FNI(N)=N
CALL proc(FNI(4))
This will pass the 4 as an integer instead of a real number.

Arrays and strings have physical and logical length information stored in the —2 and —1 elements of

the array. (See the Basic Interpreter Reference Manual.) The point to note here is that if you change
the length of a string or array, you must update the logical length so that BASIC knows what you did.
Two-dimensional arrays and string arrays have length information at the beginning of each major
dimension or string element.

(See below for a discussion on converting byte addresses to word addresses.)

COBOLII

— Much like FORTRAN, COBOL II passes all parameters by reference unless the parameter is enclosed
in backslashes, in which case it is passed by value.

— All parameters are passed as WORD addresses unless an @ is used in front of the parameter name, in
which case a BYTE address is passed.

F-3

- If you are calling a function procedure, an extension to the CALL statement (the GIVING clause, as
in CALL proc USING parm GIVING value) allows you to pick up the return value; you MUST use this
construct if you are calling a function procedure (even if you have no use for the return value) so that
the stack is decremented properly.

- Aswith FORTRAN, you can generate the bit mask for OPTION VARIABLE procedures by passing it
by value as the last parameter(s).

- COBOL II allows you to call intrinsics via the CALL INTRINSIC statement, relieving you of
worrying about value v. reference, byte addressing, the OPTION VARIABLE mask, and so forth.

- The data types are precisely the same as for COBOL, above.

OPTION VARIABLE mask

The OPTION VARIABLE MASK IS ONE WORD AT Q-4 (or two words at Q-5 and Q-4 if there are more
than 16 parameters) that describes which parameters are present. The RIGHTMOST bit (bit 15 in
HP3000 nomenclature) corresponds to the rightmost (last) parameter; bit 14 refers to the next-to-last,
and so forth on back to the first parameter. A 1 bit means the parameter is present; 0 means that the
parameter was omitted and it should not be accessed.

For example, suppose we have the following procedure head:

PROCEDURE upshift(string,length,result);
VALUE length;

BYTE ARRAY string;

INTEGER length,result;

OPTION VARIABLE;

and we wish to call this from FORTRAN. What would be the proper CALL statement? Since there are
three parameters, the last three bits of the mask would be used. If all parameters were included, the call
would look like this:

CALL UPSHIFT(CHARSTRING, LEN ,IRESULT, %7L)
If, for example, the last parameter (RESULT) were omitted, the call would be:

CALL UPSHIFT(CHARSTRING, LEN , 0 , %6L)

The zero as the third parameter is required as a place holder.

Byte to word address conversion

It is sometimes desirable (or necessary) to convert a passed byte address to a word address (so that the
array can be passed to the file system intrinsics, for example). You will find that if you attempt to
equivalence a word array back to a passed byte array you will get a warning “ARITHMETIC RIGHT
SHIFT EMITTED.” What this is saying is that the SPL compiler is emitting an ASR 1 instruction to
convert the byte address to a word address, and you are being warned because this is not always the

F-4

correct thing to do. The reason for this is that it is possible to have byte addresses that point to the
DB-minus area (in fact, BASIC does this all the time) but it is impossible to tell if an address is in the
DB-minus area or is simply a very large DB-plus byte address without looking at the registers. Hereisa
foolproof procedure that will generate the proper word address given any byte address provided that the
byte address is not odd.

INTEGER PROCEDURE wordadr(byteadr);
ARRAY;
BYTE byteadr;
BEGIN
INTEGER S0=S; <<Address of S>>
tos:=tos:=@byteadr & LSR(1); <<Logical divide by 2>>
IF tos>@S0 then tos.(0:1):=1; <<If in DB-minus, fix sign>>
wordadr:=tos
END; <<wordadr>>

Sample call:

PROCEDURE sample(string);

BYTE ARRAY string;

BEGIN
POINTER stringp; <<Word pointer>>
@stringp;=wordadr(string);

!
&

INDEX

A

ABSOLUTE addressing, 4-2, 4-4
Absolute value, 4-12

Actual-parameter, 4-5, 5-11 —5-19
Addition, 4-12, 4-16

Addresses, 4-3

Addressing range, register, 1-10, 1-11, 3-4
ALPHA, 4-17

AND, 4-13,4-19,59

Arithmetic expression, 4-5, 4-11, 4-13
Arithmetic operators, 4-11, 4-12,4-13
Array, 2-12, 3-4 —4-11,7-11 —7-16
ASCII character set, A-1

ASSEMBLE statement, 6-1 — 6-13
Assignment statement, 4-5, 4-11, 4-12, 4-22 — 4-24
AUTOPAGE, 9-8

B

Based constant, 2-6
BEGIN statement, 1-1
Bit operations,

concatenation, 4-7, 4-8

deposit, 4-22

extraction, 4-6, 4-7

shift, 4-8 — 4-10
Byte comparison, 4-15, 4-17,4-18
Byte address conversion, Appendix F
Byte format, 2-4

C

Call by reference, 5-12,5-13
Call by value, 5-12, 5-13, 7-2
CARRY, 4-19, 4-20, 4-29
CASE statement, 5-1, 5-10
Character string, 2-11
CHECK, OPTION, 7-6
Code segmentation, 1-6 — 1-8
Comments, 1-2, 9-3
Compiler commands, 1-2, 9-2 —9-21
Composite constant, 2-7
Compound statement, 1-13
Concatenation, bit, 4-7, 4-8
Condition clauses, 4-19, 4-20, 4-21, 54, 5-5, 5-7, 5-8, 5-9
Constants

based, 2-6

composite, 2-7

double integer, 2-5

equated integer, 2-8

integer, 2-5

Constants
logical, 2-11

long, 2-10

real, 2-8, 2-9

string, 2-11
Control, program, 5-1 — 5-20
CONTROL-Y, 9-1
$CONTROL command, 9-6 —9-12
$CONTROL SEGMENT, 1-7, 1-8, 9-10
$CONTROL SUBPROGRAM, 1-5, 1-6, 9-11
$COPYRIGHT command, 9-20
Cross reference, 9-20

D

DABZ, 4-19, 4-20, 5-5
Data item, 4-2
DATASEG Declaration, 3-19
Data segment, 1-9 —1-11
DB register, 1-9, 1-10, 1-11, 6-15, 6-16
Declarations, global
array, 3-1, 34 — 3-11, 3-13
define, 3-1, 3-17
entry, 3-1, 3-16
equate, 3-1, 3-18, 3-19
label, 3-1, 3-15
pointer, 3-1, 3-11, 3-13 — 3-15
simple variable, 3-1, 3-2, 3-3, 34
switch, 3-1, 3-15, 3-16
Declarations, local
arrays, 7-11 — 7-16
pointers, 7-17 — 7-20
simple variable, 7-7 — 7-10
Define declaration, 3-17, 3-18, 7-3, 7-22
DEFINE, 9-9
DELETE statement, 6-14
Delimiters, 1-2
Deposit, bit, 4-22
Digit, 2-5, 2-6
Direct array, 34 — 3-8, 3-10, 3-11, 3-12,7-12, 7-13
Division, 4-12,4-16
DL register, 1-9, 1-10, 6-15, 6-16
DO statement, 5-1, 5-4, 5-7
Double integer constant, 2-5
Double integer format, 2-1, 2-2
DXBZ, 4-19, 4-20, 5-5

E
$EDIT command, 9-6 — 9-19

ELSE part, 4-20, 4-21, 5-6, 5-7
Ending value, 5-6, 5-7

Index-1

INDEX (continued)

END statement, 1-1 Index register, 1-9, 3-3, 3-4, 3-5, 3-7, 3-8, 3-14, 4-2, 44,
Entry point, 1-13, 1-14, 3-16, 3-17, 5-11, 7-22 4-8,4-20, 5-2, 5-10, 6-15, 6-16
Equated integer constant, 2-8, 3-18, 7-23, 7-24 Indirect array, 34 — 3-8, 3-10, 3-11, 3-12, 7-12, 7-13
Error messages, C-3, E-1 —E-11 Initialization
Exponentiation, 4-11, 4-12 array, 3-8, 3-9, 7-14, 7-15, 7-16
Expression pointer, 3-13, 3-15, 7-18, 7-19
arithmetic, 4-5, 4-11 —4-13 simple variables, 3-3, 7-8, 7-9, 7-10
IF, 4-20, 4-21 Instruction formats, 6-1 — 6-13
logical, 4-5,4-13 —4-18 Integer constant, 2-5
types, 4-1,4-11 Integer format, 2-1
EXTERNAL attribute, 3-2, 3-6, 3-11, 3-13, 7-10, 7-11, INTERNAL, OPTION, 7-7
7-16,7-20 INTERRUPT, OPTION, 7-7
EXTERNAL, OPTION, 7-6 Intrinsic, 1-5, 1-6, 1-12, 7-25, 7-26, C-1 —C-3, D-1 — D4
Extraction, bit, 4-6, 4-7 IXBZ, 4-19,4-20,5-5
F L
FALSE, 2-11,4-16 Labels, statement, 1-1, 2-15, 5-2, 5-3, 5-13 — 5-16, 7-20,
File equations, 8-11 7-21
FOPEN intrinsic, 8-2 — 84 LAND, 4-13,4-14,4-16, 59
FOR statement, 5-1, 5-6, 5-7 Local variables, 1-3, 1-11
Formal designator, 104, 10-5 Logical constant, 2-11
Format, data, 2-1 — 24 Logical expression, 4-5, 4-13 — 4-18
Format, source, 1-1 Logical format, 2-4
FORWARD, OPTION, 7-7 Logical operators, 4-14, 4-15
FREAD intrinsic, 8-4 — 8-6 Long constant, 2-5, 2-1C
Function designator, 4-4,4-11 Long format, 2-3, 2-4
FUPDATE intrinsic, 8-9 — 8-10 Loop statement, 5-4 — 5-7
FWRITE intrinsic 8-7 — 8-8 LOR, 4-13, 4-14, 4-16, 5-9
G M
GLOBAL attribute, 3-2, 3-6, 3-11, 3-18, 7-10, 7-11, 7-16. Main body, 1-5
7-20 MODD, 4-16
Global data declarations, 1-5, 1-6, 3-1 — 3-19 MOD, 4-12,4-16
Global variables, 1-3, 1-11, 3-1 — 3-19 Modulo, 4-12,4-16
GO TO statement, 5-1,5-2, 5-3 MOVE statement, 4-25—4.27
MOVEX statement, 4-28
H MPE commands, 10-1 — 10-19
Multiplication, 4-12, 4-16
Hexadecimal constants, 2-6
N
I
Names, 2-12
IABZ, 4-19, 420,55 NOCARRY, 4-19, 4-20, 4-29
$IF command, 9-12 NOVERFLOW, 4-19, 4-20
IF expressions, 4-20, 4-21 NUMERIC, 4-17
IF statement, 5-1, 5-8, 5-9 Numeric data I/0, 8-11
Identifier, 2-12
$INCLUDE command, 9-21 0
Index
ABSOLUTE, 4-2 Octal constants, 2-6
array, 3-5, 3-8, 3-9, 3-10,4-2, 45 Operators
pointer, 3-13, 3-15, 4-2,4-5 arithmetic, 4-11, 4-12, 4-13
switch, 2-15, 5-2 lngical, 4-14, 4-15

Index-2

INDEX (continued)

Operators

relational, 4-15, 4-17
OPTION CHECK, 7-6

EXTERNAL, 7-6

FORWARD, 7-7

INTERNAL, 7-7

INTERRUPT, 7-7

PRIVILEGED, 7-6

SPLIT, 7-7

UNCALLABLE, 76

VARIABLE, 4-5, 5-13,5-14,5-17,5-19,7-2,74,7-6
Options, procedure, 7-2, 7-3, 7-6, 7-7
OR, 4-13,4-19,59
OVERFLOW, 4-19,4-20
Own variables, 7-7, 7-10, 7-15, 7-19

P

$PAGE command, 9-15

Parameters, 4-4 —4-16, 5-11 —5-20,7-2, 74,75
Precedence, operation, 4-12,4-13

PB addressing, 4-17

PB register, 1-7

PL register, 1-7
Pointer,2-13,2-14,3-11,3-13—3-16,4-2,4-3,7-17—17-19
Power, 2-9, 2-10

P register, 1-7

:PREP command, 10-11

:PREPRUN command, 10-12

Primary DB, 3-4 — 3-6

PRIVILEGED, OPTION, 7-6

Procedure, 1-3,1-5,1-6,1-11,5-11 —5-17,7-2 — 7-25
Procedure call statement, 5-1, 5-11 —5-17

Procedure name, 5-11

Program, 1-4

Program file, 10-1, 104, 10-6, 10-9, 10-11, 10-14
PUSH statement, 6-15

Q

Q register, 1-9, 1-10, 5-12 — 5-17, 5-19, 6-15, 6-16, 7-4,
76—179,7-11—17-15,7-18,7-19

R

Range test, 4-14, 4-16

READ intrinsic, 8-2

Real constant, 2-5, 2-8, 29

Real format, 2-2, 2-3

Reference, call by, 5-12, 5-13

Reference-identifier, 3-3, 3-7, 3-8, 3-13, 3-14,7-8,7-9,
7-13,7-14,7-18,7-19

Registers, 1-7, 1-9, 1-10, 1-11, 6-15, 6-16

Relational operators, 4-15,4-17

Relocatable libraries, 10-14 — 10-17

Reserved words, B-1

Index-3

RETURN statement, 5-1, 5-20
:RUN command, 1-14, 10-14

S

SBANK register, 6-15, 6-16

SCAN statement, 4-30

Secondary DB, 34 — 3-6

Segment, 1-6 —1-11

Segmented libraries, 10-17 — 10-19
Segmenter, 10-14 — 10-19

Sequence numbers, 9-17

$SET command, 9-13

SET statement, 6-16

Shift, bit, 4-8 —4-10

Simple variable, 3-2, 3-3, 34, 7-7 — 7-10
:SPL command, 10-6, 10-7

:SPLGO command, 10-10

:SPLPREP command, 109 — 10-10

S register, 1-9,1-10, 1-11, 6-15, 6-16
SPECIAL, 4-17

Specification, parameter, 7-2, 7-27, 7-28
SPLIT, OPTION, 7-7

SPLIT STACK, 8-2

$SPLIT command, 9-20

Stack decrement, 4-17, 4-18, 4-26, 4-27
Stacking parameters, 44 —4-6, 5-12, 5-13
Stack marker, 5-12 —5-16

Starting value, 5-6, 5-7

Statement, 1-1,1-5, 1-13

Status register, 4-20, 4-29, 5-12, 6-15, 6-16
Step vaiue, 5-6, 5-7

String constant, 2-11

Subprogram, 14, 1-5, 1-6, 7-1
Subroutine, 14, 1-5, 1-6, 1-11, 7-26 — 7-28
Subroutine call statement, 5-1, 5-18
Subscripts, array, 2-12, 4-2, 4-23, 4-24
Subtraction, 4-12, 4-16

Switch, 2-16, 5-2, 5-3, 7-21

Symbol map, 9-7

T

Terminal character, 4-28, 4-29

Test character, 4-28, 4-29

Test vairable, 5-6, 5-7

Testword, 4-28, 4-29

THEN part, 4-20, 4-21, 5-6, 5-7
$TITLE command, 9-14

Top of stack (TOS), 1-10, 1-11, 4-2, 4-3
TRUE, 2-11,4-16

Two’s complement, 2-1

Type, data, 2-1, 3-2, 3-15, 74
Type designator, 2-6, 2-7, 2-9, 2-10
Type mixing, 4-13, 4-16

Type transfer functions, 4-1

INDEX (continued)

U w
UNCALLABLE, OPTION, 7-6 WHILE statement, 5-1, 5-5, 5-7
USL file, 3-2,10-2, 104, 10-6, 10-7, 10-10, 10-11, 10-12 WITH statement, 6-17
10-14,10-15
X
A"

XOR, 4-14,4-16
Value, call by, 5-12, 5-13, 7-2
VARIABLE, OPTION, 7-6 VA
Variable simple, 3-2, 3-3, 3-4, 4-2, 7-7 — 7-10
Z register, 1-9, 1-10, 6-15, 6-16

Index-4

READER COMMENT SHEET

HP 3000 Computer System

System Programming Language
Reference Manual

30000-90024 Feb 1984

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.
Please use additional pages if necessary.

Is this manual technically accurate? Yes [] No [J (If no, explain under Comments, below.)
Are the concepts and wording easy to understand? Yes [J] No [J (if no, explain under Comments, below.)
Is the format of this manual convenient in size, Yes [J No [1 (If no, explain or suggest improvements
arrangement, and readability? under Comments, below.)
Comments:
FROM:

Name

Company

Address

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 1070 CUPERTINO,CALIFORNIA

POSTAGE WILL BE PAID BY ADDRESSEE

Publications Manager
Hewlett-Packard Company
Computer Language Lab
19420 Homestead Road
Cupertino, California 95014

ST FOLD

Part No. 30000-90024
£0284 (/; HEWLETT
Printed in U.S.A. 2/84 B pACKARD

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	A-01
	B-01
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	F-01
	F-02
	F-03
	F-04
	F-05
	Index-01
	Index-02
	Index-03
	Index-04
	replyA
	replyB
	xBack

